如图所示,光滑半圆弧轨道半径为R,质量为m的小球自圆弧左端处以某一水平的初速度抛出,恰好落到圆弧轨道的最低点,当小球与轨道相碰时,垂直轨道的速度瞬时变为0,切向速度不变,则:
A.小球与轨道相碰后,小球能上升的最大高度![]() |
B.小球做平抛运动的初速度![]() |
C.小球再次返回圆弧的最低点的压力![]() |
D.在全过程中小球机械能守恒 |
如图所示,一质量为m的小球固定于轻质弹簧的一端,弹簧的另一端固定于O点处,将小球拉至A处,弹簧恰好无形变,由静止释放小球,它运动到O点正下方B点间的竖直高度差为h,速度为v,则( )
A.由A到B重力做的功等于mgh |
B.由A到B重力势能减少![]() |
C.由A到B小球克服弹力做功为mgh |
D.小球到达位置B时弹簧的弹性势能为mgh-![]() |
如图所示,轻杆AB长l,两端各连接一个小球(可视为质点),两小球质量关系为,轻杆绕距B端
处的O轴在竖直平面内顺时针自由转动。当轻杆转至水平位置时,A球速度为
,则在以后的运动过程中
A.A球机械能守恒 |
B.当B球运动至最低点时,球A对杆作用力等于0 |
C.当B球运动到最高点时,杆对B球作用力等于0 |
D.A球从图示位置运动到最低点的过程中,杆对A球做功等于0 |
“水流星”是一种常见的杂技项目,该运动可以简化为轻绳一端系着小球在竖直平面内的圆周运动模型.已知绳长为l,重力加速度为g,则
A.小球运动到最低点Q时,处于失重状态 |
B.小球初速度v0越大,则在P、Q两点绳对小球的拉力差越大 |
C.当![]() |
D.当![]() |
轻质弹簧的一端固定于竖直墙壁,另一端与一木块连接在一起,木块放在粗糙的水平地面上.在外力作用下,木块将弹簧压缩了一段距离后静止于A点,如图所示.现撤去外力,木块向右运动,当它运动到O点时弹簧恰好恢复原长.在此过程中
A.木块的动能一直增大 |
B.弹簧的弹性势能一直增大 |
C.弹簧减小的弹性势能等于木块增加的动能 |
D.弹簧减小的弹性势能大于木块增加的动能 |
如图所示,分别用质量不计且不能伸长的细线与弹簧分别吊质量相同的小球A、B,将二球拉开,使细线与弹簧都在水平方向上,且高度相同,而后由静止放开A、B二球,二球在运动中空气阻力不计,到最低点时二球在同一水平面上,关于二球运动过程中的下列说法中错误的是
A.A球的机械能守恒
B.弹簧的弹力对B球不做功
C.刚刚释放时,细线对A球的拉力为零
D.在最低点时,B球的速度比A球的速度小
特战队员在进行素质训练时,抓住一端固定在同一水平高度的不同位置的绳索,从高度一定的平台由水平状态无初速开始下摆,如图所示,在到达竖直状态时放开绳索,特战队员水平抛出直到落地。不计绳索质量和空气阻力,特战队员可看成质点。下列说法正确的是( )
A.绳索越长,特战队员落地时的水平位移越大 |
B.绳索越长,特战队员落地时的速度越大 |
C.绳索越长,特战队员落地时的水平方向速度越大 |
D.绳索越长,特战队员落地时的竖直方向速度越大 |
如图所示,一质点在重力和水平恒力作用下,速度从竖直方向变为水平方向,在此过程中,质点的( )
A.机械能守恒 |
B.机械能不断增加 |
C.重力势能不断减小 |
D.动能先减小后增大 |
把小球放在竖立的弹簧上,并把球往下按至A位置,如图甲所示。迅速松手后,球升高至最高位置C(图丙),途中经过位置B时弹簧正处于原长(图乙)。忽略弹簧的质量和空气阻力。则小球从A运动到C的过程中,下列说法正确的是
A.经过位置B时小球的加速度为0 |
B.经过位置B时小球的速度最大 |
C.小球、地球、弹簧所组成系统的机械能守恒 |
D.小球、地球、弹簧所组成系统的机械能先增大后减小 |
某物块以80 J初动能从固定斜面底端上滑,以斜面底端为零势能参考平面,到达最高点时物块的重力势能为60 J.物块在斜面上滑动过程中,当动能和势能恰好相等时,其机械能可能为.
A.![]() |
B.![]() |
C.20 J | D.48 J |
工厂里有一种运货的过程可以简化为如图所示,货物以的初速度滑上静止的货车的左端,已知货物质量m=20kg,货车质量M=30kg,货车高h=0.8m。在光滑轨道OB上的A点设置一固定的障碍物,当货车撞到障碍物时会被粘住不动,而货物就被抛出,恰好会沿BC方向落在B点。已知货车上表面的动摩擦因数
,货物可简化为质点,斜面的倾角为
。
(1)求货物从A点到B点的时间;
(2)求AB之间的水平距离;
(3)若已知OA段距离足够长,导致货物在碰到A之前已经与货车达到共同速度,则货车的长度是多少?
如图甲所示,一滑块随足够长的水平传送带一起向右匀速运动,滑块与传送带之间的动摩擦因数μ=0.2。一质量m=0.05kg的子弹水平向左射入滑块并留在其中,取水平向左的方向为正方向,子弹在整个运动过程中的v-t图象如图乙所示,已知传送带的速度始终保持不变,滑块最后恰好能从传送带的右端水平飞出,g取10m/s2。
(1)求滑块的质量;
(2)求滑块向左运动过程中与传送带摩擦产生的热量;
(3)若滑块可视为质点且传送带与转动轮间不打滑,则转动轮的半径R为多少?
如图所示,固定的光滑圆弧面与质量为6 kg的小车C的上表面平滑相接,在圆弧面上有一个质量为2 kg的滑块A,在小车C的左端有一个质量为2 kg的滑块B,滑块A与B均可看做质点.现使滑块A从距小车的上表面高h=1.25 m处由静止下滑,与B碰撞后瞬间粘合在一起共同运动,最终没有从小车C上滑出.已知滑块A、B与小车C的动摩擦因数均为μ=0.5,小车C与水平地面的摩擦忽略不计,取g=10 m/s2.求:
(1)滑块A与B碰撞后瞬间的共同速度的大小;
(2)小车C上表面的最短长度.
如图示,水平面光滑,轻质弹簧右端固定,左端栓连物块b,小车质量M=3kg,粗糙部分AO长L=2m,动摩擦因数μ=0.3,OB部分光滑。另一小物块a,放在车的最左端,和车一起以v0=4m/s的速度向右匀速运动,车撞到固定挡板后瞬间速度变为零,但不与挡板粘连。已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内。a、b 两物块视为质点质量均为m=1kg,碰撞时间极短且不粘连,碰后一起向右运动。(取g="10" m/s2)求:
(1)物块a与b碰前的速度大小
(2)弹簧具有的最大弹性势能
(3)当物块a相对小车静止时在小车上的位置距O点多远
(4)当物块a相对小车静止时小车右端B距挡板多远
质量为M="6" kg的木板B静止于光滑水平面上,物块A质量为6 kg,停在B的左端。质量为1 kg的小球用长为0. 8 m的轻绳悬挂在固定点O上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A发生碰撞后反弹,反弹所能达到的最大高度为0.2 m,物块与小球可视为质点,不计空气阻力。已知A、B间的动摩擦因数,为使A、B达到共同速度前A不滑离木板,木板至少多长?
如图所示,两物块A、B并排静置于高h=0.80m的光滑水平桌面上,物块的质量均为M=0.60kg。一颗质量m=0.10kg的子弹C以v0=100m/s的水平速度从左面射入A,子弹射穿A后接着射入B并留在B中,此时A、B都没有离开桌面。已知物块A的长度为0.27m,A离开桌面后,落地点到桌边的水平距离s=2.0m。设子弹在物块A、B 中穿行时受到的阻力大小相等,g取10m/s2。(平抛过程中物块看成质点)求:
(1)物块A和物块B离开桌面时速度的大小分别是多少;
(2)子弹在物块B中打入的深度;
(3)若使子弹在物块B中穿行时物块B未离开桌面,则物块B到桌边的最小初始距离。
一滑块经水平轨道AB,进入竖直平面内的四分之一圆弧轨道BC。已知滑块的质量m=0.6kg,在A点的速度vA=8m/s,AB长x=5m,滑块与水平轨道间的动摩擦因数μ=0.15,圆弧轨道的半径R=2m,滑块离开C点后竖直上升h=0.2m,取g=10m/s2。
(不计空气阻力)求:
(1)滑块经过B点时速度的大小;
(2)滑块冲到圆弧轨道最低点B时对轨道的压力;
(3)滑块在圆弧轨道BC段克服摩擦力所做的功。
如图所示,固定在地面上的光滑圆弧轨道AB、EF,他们的圆心角均为90°,半径均为R。一质量为m ,上表面长也为R的小车静止在光滑水平面CD上,小车上表面与轨道AB、EF的末端B、E相切。一质量为m的物体(大小不计)从轨道AB的A点由静止下滑,由末端B滑上小车,小车在摩擦力的作用下向右运动。当小车右端与壁DE刚接触时,物体m恰好滑动到小车右端且与小车共速。小车与DE相碰后立即停止运动但不粘连,物体则继续滑上圆弧轨道EF,以后又滑下来冲上小车。求:
(1)物体从A点滑到B点时的速率;
(2)物体与小车之间的滑动摩擦力;
(3)水平面CD的长度;
(4)当物体再从轨道EF滑下并滑上小车后,如果小车与壁BC相碰后速度也立即变为零,最后物体m停在小车上的Q点,则Q点距小车右端的距离。
如图所示,在光滑的水平地面上,静止着质量为M =2.0kg的小车A,小车的上表面距离地面的高度为0.8m,小车A的左端叠放着一个质量为m=1.0kg的小物块B(可视为质点)处于静止状态,小物块与小车上表面之间的动摩擦因数μ=0.20。在小车A的左端正上方,用长为R=1.6m的不可伸长的轻绳将质量为m =1.0kg的小球C悬于固定点O点。现将小球C拉至使轻绳拉直且与竖起方向成θ=60°角的位置由静止释放,到达O点的正下方时,小球C与B发生弹性正碰(碰撞中无机械能损失),小物块从小车右端离开时车的速度为1m/s,空气阻力不计,取g=10m/s2. 求:
(1)小车上表面的长度L是多少?
(2)小物块落地时距小车右端的水平距离是多少?
如甲图所示,水平光滑地面上用两颗钉子(质量忽略不计)固定停放着一辆质量为M=3kg的小车,小车的四分之一圆弧轨道是光滑的,半径为R=0.5m,在最低点B与水平轨道BC相切,视为质点的质量为m=1kg的物块从A点正上方距A点高为h=0.3m处无初速下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道滑行恰好停在轨道末端C。
现去掉钉子(水平面依然光滑未被破坏)不固定小车,而让其左侧靠在竖直墙壁上,该物块仍从原高度处无初速下落,如乙图所示。
不考虑空气阻力和物块落入圆弧轨道时的能量损失,已知物块与水平轨道BC间的动摩擦因数为μ=0.2
求:(1)水平轨道BC长度;
(2)小车固定时物块到达圆弧轨道最低点B时对轨道的压力;
(3)小车不固定时物块再次停在小车上时距小车B点的距离;
(4)两种情况下由于摩擦系统产生的热量之比。
如图所示,坡道顶端距水平面高度为h,质量为m1的小物块A从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A制动,将轻弹簧的一端固定在水平滑道延长线M处的墙上,另一端与质量为m2的挡板B相连,弹簧处于原长时,B恰位于滑道的末端O点。A与B碰撞时间极短,碰后结合在一起共同压缩弹簧,已知在OM段A、B与水平面间的动摩擦因数均为μ,其余各处的摩擦不计,重力加速度为g,求
(1)物块A在与挡板B碰撞前瞬间速度v的大小;
(2)弹簧最大压缩量为d时的弹性势能EP(设弹簧处于原长时弹性势能为零)。
如图所示,水平地面和半圆轨道面均光滑,质量M=1kg的小车静止在地面上,小车上表面与R=0.24m的半圆轨道最低点P的切线相平。现有一质量m=2kg的滑块(可视为质点)以v0=6m/s的初速度滑上小车左端,二者共速时小车还未与墙壁碰撞,当小车与墙壁碰撞时即被粘在墙壁上,已知滑块与小车表面的滑动摩擦因数μ=0.2,g取10m/s2,求:
(1)滑块与小车共速时的速度及小车的最小长度;
(2)滑块m恰好从Q点离开圆弧轨道时小车的长度;
(3)讨论小车的长度L在什么范围,滑块能滑上P点且在圆轨道运动时不脱离圆轨道?
如下图,半径R = 1.0m的四分之一圆弧形光滑轨道竖直放置,圆弧最低点B与长为L=0.5m的水平面BC相切于B点,BC离地面高h = 0.45m,C点与一倾角为θ = 37°的光滑斜面连接,质量m=1.0 kg的小滑块从圆弧上某点由静止释放,已知滑块与水平面间的动摩擦因数µ=0.1。(已知sin37°=0.6 cos37°="0.8," g取l0 m/s2)求:
(1)若小滑块到达圆弧B点时对圆弧的压力刚好等于其重力的2倍,则小滑块应从圆弧上离地面多高处释放;
(2)若在C点放置一个质量M=2.0kg的小球,小滑块运动到C点与小球正碰后返回恰好停在B点,求小滑块与小球碰后瞬间小滑块的速度大小。
(3)小滑块与小球碰后小球将落在何处并求其在空中的飞行时间。
如图所示,O点为固定转轴,把一个长度为L的细绳上端固定在O点,细绳下端系一个质量为m的小摆球,当小摆球处于静止状态时恰好与平台的右端点B点接触,但无压力。一个质量为M的小钢球沿着光滑的平台自左向右运动到B点时与静止的小摆球m发生正碰,碰撞后摆球在绳的约束下作圆周运动,且恰好能够经过最高点A,而小钢球M做平抛运动落在水平地面上的C点。测得B、C两点间的水平距离DC=x,平台的高度为h,不计空气阻力,本地的重力加速度为g,请计算:
(1)碰撞后小钢球M做平抛运动的初速度大小;
(2)小球m在B点时碰撞后的速度;
(3)碰撞前小钢球M在平台上向右运动的速度大小。
在光滑水平地面上有一凹槽A,中央放一小物块B,物块与左右两边槽壁的距离如图所示,L为1.0m。凹槽与物块的质量均为m,两者之间的动摩擦因素μ = 0.05。开始时物块静止,凹槽以v0 = 5m/s的初速度向右运动。设物块与凹槽壁碰撞过程中没有能量损失,且碰撞时间不计。G取10m/s2。求:
(1)物块与凹槽相对静止时的共同速度;
(2)从凹槽开始运动到两者相对静止,物块与右侧槽壁碰撞的次数;
(3)从凹槽开始运动到两者相对静止所经历的时间及该时间内凹槽运动的位移大小。