在复平面内,复数
(i是虚数单位)对应的点在( )
| A.第一象限 | B.第二象限 | C.第三象限 | D.第四象限 |
已知集合
( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
采用系统抽样方法从1000人中抽取50人做问卷调查,为此将他们随机编号1,, ,1000,适当分组后在第一组采用简单随机抽样的方法抽到的号码为8,抽到的50人中,编号落入区间
的人做问卷A,编号落入区间
的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷C的人数为( )
| A.12 | B.13 | C.14 | D.15 |
函数
(e是自然对数的底数)的部分图象大致是( )
下列说法不正确的是( )
| A.若“p且q”为假,则p,q至少有一个是假命题 |
B.命题“ ”的否定是“ ” |
C.“ ”是“ 为偶函数”的充要条件 |
D.当 时,幂函数 上单调递减 |
执行如图所示的程序框图,输出的T=( )
| A.29 | B.44 | C.52 | D.62 |
将函数
的图象上各点的纵坐标不变,横坐标扩大到原来的2倍,所得图象的一条对称轴方程可以是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
变量
满足线性约束条件
目标函数
仅在点
取得最小值,则k的取值范围是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
函数
的所有零点之和为( )
| A.2 | B.4 | C.6 | D.8 |
对于函数
,部分
的对应关系如下表:
数列
满足:
,且对于任意
,点
都在函数
的图象上,则
( )
| A.7539 | B.7546 | C.7549 | D.7554 |
已知函数
的值是_________.
已知双曲线
的左焦点
,右焦点
,离心率
.若点P为双曲线C右支上一点,则
__________.
若某几何体的三视图如右图所示,则此几何体的体积是______.
已知实数
满足
,则
的最小值为________.
在平面直角坐标系
中,设直线
与圆
交于A,B两点,O为坐标原点,若圆上一点C满足
,则r=______.
(本小题满分12分)在
中,已知
.
(Ⅰ)求sinA与角B的值;
(Ⅱ)若角A,B,C的对边分别为
的值.[
(本小题满分12分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组
,第二组
, ,第五组
.右图是按上述分组方法得到的频率分布直方图.
按上述分组方法得到的频率分布直方图.
(Ⅰ)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;
(Ⅱ)设m,n表示该班某两位同学的百米测试成绩,且已知
求事件“
”发生的概率.
(本小题满分12分)
是边长为4的等边三角形,
是等腰直角三角形,
,平面
平面ABD,且
平面ABC,EC=2.
(Ⅰ)证明:DE//平面ABC;
(Ⅱ)证明:
.
(本小题满分12分)已知数列
的前
项和为
.
(Ⅰ)求数列
的通项公式;
(Ⅱ)设集合
,等差数列
的任一项
,其中
是
中的最小数,
,求数列
的通项公式.
(本小题满分13分)已知以C为圆心的动圆过定点
,且与圆
(B为圆心)相切,点C的轨迹为曲线T.设Q为曲线T上(不在x轴上)的动点,过点A作OQ(O为坐标原点)的平行线交曲线T于M,N两点.
(Ⅰ)求曲线T的方程;
(Ⅱ)是否存在常数
,使
总成立?若存在,求
;若不存在,说明理由.
(本小题满分14分)已知函数
..
(Ⅰ)若
,求函数
的最大值;
(Ⅱ)令
,求函数
的单调区间;
(Ⅲ)若
,正实数
满足
,证明
.