校九年级数学兴趣小组的同学调查了若干名家长对“初中学生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.
依据图中信息,得出下列结论:
(1)接受这次调查的家长人数为200人;
(2)在扇形统计图中,“不赞同”的家长部分所对应的扇形圆心角大小为162°;
(3)表示“无所谓”的家长人数为40人;
(4)随机抽查一名接受调查的家长,恰好抽到“很赞同”的家长的概率是.
其中正确的结论个数为( )
A.4 | B.3 | C.2 | D.1 |
某市6月份某周内每天的最高气温数据如下
(单位:℃):24 26 29 26 29 32 29
则这组数据的众数和中位数分别是( )
A.29,29 | B.26,26 | C.26,29 | D.29,32. |
一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机地搭配在一起.则其颜色搭配一致的概率是( )
A.![]() |
B.![]() |
C.![]() |
D.1. |
经过某十字路口的汽车,可能直行,也可能左转或者右转,如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
如图,有一个质地均匀的正四面体,其四个面上分别画着圆、等边三角形、菱形、正五边形.投掷该正四面体一次,向下的一面的图形既是轴对称图形又是中心对称图形的概率是( )
A.1 | B.![]() |
C.![]() |
D.![]() |
下表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差
:
根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择( )
A.甲 | B.乙 | C.丙 | D.丁 |
小刚参加射击比赛,成绩统计如下表
成绩(环) |
6 |
7 |
8 |
9 |
10 |
次数 |
1 |
3 |
2 |
3 |
1 |
关于他的射击成绩,下列说法正确的是( ).
A.极差是2环 B.中位数是8环
C.众数是9环 D.平均数是9环
下列命题中是真命题的是( )
A.确定性事件发生的概率为1 |
B.平分弦的直径垂直于弦 |
C.正多边形都是轴对称图形 |
D.两边及其一边的对角对应相等的两个三角形全等 |
有一组数据如下:2,3,a,5,6,它们的平均数是4,则这组数据的方差是 .
用2、3、4三个数字排成一个三位数,则排出的数是偶数的概率为 .
在一次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83.则这组数据的中位数为 .
已知一组数据6,2,4,2,3,5,2,4,这组数据的中位数为 .
在射击比赛中,某运动员的6次射击成绩(单位:环)为:7,8,10,8,9,6,计算这组数据的方差为 .
2010年5月1日,第41届世博会在上海举办,世博知识在校园迅速传播.小明同学就本班学生对世博知识的了解程度进行了一次调查统计,下图是他采集数据后绘制的两幅不完整的统计图(A:不了解,B:一般了解,C:了解较多,D:熟悉).请你根据图中提供的信息解答以下问题:
(1)求该班共有多少名学生;
(2)在条形统计图中,将表示“一般了解”的部分补充完整;
(3)在扇形统计图中,计算出“了解较多”部分所对应的圆心角的度数;
(4)从该班中任选一人,其对世博知识的了解程度为“熟悉”的概率是多少?
(本小题满分7分)
“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据图中提供的信息,解答下列问题:
(1)补全条形统计图;
(2)估计该市这一年(365天)空气质量达到“优”和“良”的总天数;
(3)计算随机选取这一年内的某一天,空气质量是“优”的概率.
2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度,小明为了解市政府调整水价方案的社会反响,随机访问了自己居住小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.
小明发现每月每户的用水量在5m3﹣35m3之间,有8户居民对用水价格调价涨幅抱无所谓,不会考虑用水方式的改变,根据小明控制的图表和发现的信息,完成下列问题:
(1)n= ,小明调查了 户居民,并补全图1;
(2)每月每户用水量的中位数和众数分别落在什么范围?
(3)如果小明所在小区有1800户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少.
(本题满分8分) 东营市为进一步加强和改进学校体育工作,切实提高学生体质健康水平,决定推进“一校一球队、一级一专项、一人一技能”活动计划.某校决定对学生感兴趣的球类项目(A:足球, B:篮球, C:排球,D:羽毛球,E:乒乓球)进行问卷调查,学生可根据自己的喜好选修一门,李老师对某班全班同学的选课情况进行统计后,制成了两幅不完整的统计图(如图).
(1)求出该班学生人数;
(2)将统计图补充完整;
(3)若该校共有学生3500名,请估计有多少人选修足球?
(4)该班班委5人中,1人选修篮球,3人选修足球,1人选修排球,李老师要从这5人中任选2人了解他们对体育选修课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.
根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其他共五类.根据调查的部分相关数据,绘制的统计图表如下:
根据所给信息解答下列问题:
(1)请补全条形统计图并在图中标明相应数据;
(2)若菏泽市约有880万人口,请你估计最关注环保问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.
(本小题满分6分)
某小学为了解学生每天完成家庭作业所用时间的情况,从每班抽取相同数量的学生进行调查,并将所得数据进行整理,制成条形统计图和扇形统计图如下:
(1)补全条形统计图;
(2)求扇形统计图中扇形D的圆心角的度数;
(3)若该中学有2000名学生,请估计其中有多少名学生能在1.5小时内完成家庭作业?
((本小题满分6分)
小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1~4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字。若两次数字之和大于5,则小颖胜,否则小丽胜。这个游戏对双方公平吗?请说明理由。