如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转.若∠BOA的两边分别与函数、
的图象交于B、A两点,则∠OAB大小的变化趋势为( )
A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变
在平面直角坐标系中,直线y =-x+2与反比例函数的图象有唯一公共点.若直线
与反比例函数
的图象有2个公共点,则b的取值范围是( )
A.b﹥2 | B.-2﹤b﹤2 |
C.b﹥2或b﹤-2 | D.b﹤-2. |
如图,在Rt△ABC中,∠ABC=90°,AB=BC.点D是线段AB上的一点,连结CD,过点B作BG⊥CD,分别交CD、CA于点E、F,与过点A且垂直于AB的直线相交于点G,连结DF.给出以下四个结论:①;②若点D是AB的中点,则AF=
AB;③当B、C、F、D四点在同一个圆上时,DF=DB;④若
,则
.其中正确的结论序号是( )
A.①② B.③④ C.①②③ D.①②③④
在一次自行车越野赛中,甲乙两名选手行驶的路程y(千米)随时间x变化的图象(全程)如图,根据图象判定下列结论不正确的是( )
A.甲先到达终点 |
B.前30分钟,甲在乙的前面 |
C.第48分钟时,两人第一次相遇 |
D.这次比赛的全程是28千米 |
已知:,
,
,…,
观察上面的计算过程,寻找规律并计算 .
定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1﹤x2时,都有y1﹤y2,称该函数为增函数.根据以上定义,可以判断下面所给的函数中,是增函数的有_________(填上所有正确答案的序号).
① y = 2x; ② y =x+1;
③ y = x2(x>0); ④ .
如图1,四边形ABCD中,AB∥CD,AD=DC=CB=,∠A=60°.取AB的中点
,连接
,再分别取
、
的中点
,
,连接
,得到四边形
,如图2;同样方法操作得到四边形
,如图3;…,如此进行下去,则四边形
的面积为 .
如图放置的△OAB1,△B1A1B2,△B2A2B3,…都是边长为1的等边三角形,点A在轴上,点O,B1,B2,B3,…都在直线
上,则点A2015的坐标是 .
如图,在平面直角坐标系中,已知抛物线交
轴于
两点,交
轴于点
.
(1)求此抛物线的解析式;
(2)若此抛物线的对称轴与直线交于点D,作⊙D与x轴相切,⊙D交
轴于点E、F两点,求劣弧
的长;
(3)P为此抛物线在第二象限图像上的一点,PG垂直于轴,垂足为点G,试确定P点的位置,使得△PGA的面积被直线AC分为1︰2两部分.
(1)请补全以下求不等式的解集的过程.
①构造函数,画出图象:根据不等式特征构造二次函数;并在下面的坐标系中(见图1)画出二次函数
的图象(只画出图象即可).
②求得界点,标示所需:当y=0时,求得方程的解为 ;并用锯齿线标示出函数
图象中y≥0的部分.
③借助图象,写出解集:由所标示图象,可得不等式的解集为 .
(2)利用(1)中求不等式解集的步骤,求不等式的解集.
①构造函数,画出图象:
②求得界点,标示所需:
③借助图像,写出解集:
(3)参照以上两个求不等式解集的过程,借助一元二次方程的求根公式,直接写出关于x的不等式的解集.
(本小题满分13分)
在平面直角坐标系中,O为原点,直线y =-2x-1与y轴交于点A,与直线y =-x交于点B, 点B关于原点的对称点为点C.
(1)求过A,B,C三点的抛物线的解析式;
(2)P为抛物线上一点,它关于原点的对称点为Q.
①当四边形PBQC为菱形时,求点P的坐标;
②若点P的横坐标为t(-1<t<1),当t为何值时,四边形PBQC面积最大,并说明理由.
已知抛物线与x轴交于点A(α,0),B(β,0),且
,
(1)求抛物线的解析式.
(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E,是否存在x轴上的点M,y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.
(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.
如图,抛物线经过A(),B(
),C(
)三点.
(1)求抛物线的解析式;
(2)在直线AC下方的抛物线上有一点D,使得△DCA的面积最大,求点D的坐标;
(3)设点M是抛物线的顶点,试判断抛物线上是否存在点H满足?若存在,请求出点H的坐标;若不存在,请说明理由.
已知关于x的一元二次方程有两个不相等的实数根,k为正整数.
(1)求k的值;
(2)当次方程有一根为零时,直线与关于x的二次函数
的图象交于A、B两点,若M是线段AB上的一个动点,过点M作MN⊥x轴,交二次函数的图象于点N,求线段MN的最大值及此时点M的坐标;
(3)将(2)中的二次函数图象x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后的图象与原图象x轴上方的部分组成一个“W”形状的新图象,若直线与该新图象恰好有三个公共点,求b的值.
(本小题满分12分)
已知:如图①,在□ABCD中, AB=3cm,BC=5cm.AC⊥AB。△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为1cm/s,当△PNM停止平移时,点Q也停止运动.如图②,设运动时间为t(s)(0<t<4).解答下列问题:
(1)当t为何值时,PQ∥MN?
(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S△QMC∶S四边形ABQP=1∶4?若存在,求出t的值;若不存在,请说明理由.
(4)是否存在某一时刻t,使PQ⊥MQ?若存在,求出t的值;若不存在,请说明理由.