(·衢州市 第9题 3分)如图,已知“人字梯”的5个踩档把梯子等分成6份,从上往下的第二个踩档与第三个踩档的正中间处有一条60cm长的绑绳EF,tanα=,则“人字梯”的顶端离地面的高度AD是( )
|
A. |
144cm |
B. |
180cm |
C. |
240cm |
D. |
360cm |
(·湖州市 第6题 4分)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )
A.10 | B.7 | C.5 | D.4 |
(·丽水市 第8题 3分)如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示的值,错误的是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
(·绍兴市 第7题 4分)如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线。此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE。则说明这两个三角形全等的依据是[来( )
A.SAS | B.ASA | C.AAS | D.SSS |
(·温州卷 第5题 4分)如图,在△ABC中,∠C=90°,AB=5,BC=3,则cosA的值是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
(·衢州市 第12题 4分)如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0.6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于 米.
(·绍兴市 第13题 5分)由于木质衣架没有柔性,在挂置衣服的时候不太方便操作。小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可。如图1,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图2,则此时A,B两点之间的距离是 cm
(·台州市 第13题 5分)如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是
(·杭州市 第18题 8分)如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M、N分别在AB、AC边上,AM=2MB,AN=2NC,求证:DM=DN
(·嘉兴市 第22题 12分)小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm.
(1)求∠CAO'的度数.
(2)显示屏的顶部B'比原来升高了多少?
(3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度?
(·绍兴市 第20题 8分)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°。
(1)求∠BPQ的度数;
(2)求该电线杆PQ的高度(结果精确到1m)。
备用数据:,
(·台州市 第19题 8分)如图,这是一把可调节座椅的侧面示意图,已知头枕上的点到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA’处,求调整后点A’比调整前点A的高度降低了多少cm?(结果取整数)?
(参考数据:sin35°0.57,cos35°
0.82,tan35°
0.70)
(·温州卷 第18题 8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D。
(1)求证:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度数。