游客
首页 / 试卷库 / 初中数学 / 七年级 / 练习检测

中考真题分项汇编 第1期 专题12 探索性问题

2021-08-24    20    554   

如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:①△ADG≌△FDG;②GB=2AG;③△GDE∽△BEF;④S⊿BEF=。在以上4个结论中,正确的有(  )

A.1 B.2 C.3 D.4

对于二次函数.有下列四个结论:①它的对称轴是直线;②设,则当时,有;③它的图象与x轴的两个交点是(0,0)和(2,0);④当时,.其中正确的结论的个数为(      )

A.1 B.2 C.3 D.4

对于二次函数y =" -" x2 + 2x.有下列四个结论:
①它的对称轴是直线x = 1;②设y1 =" -" x12 + 2x1,y2 =" -" x22 + 2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0 < x < 2时,y>0.其中正确结论的个数为( )

A.1 B.2 C.3 D.4

各边长度都是整数、最大边长为8的三角形共有     个.

如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为     

为了求1+3+32+33+…+3100的值,可令M=1+3+32+33+…+3100,则3M=3+32+33+34+…+3101,因此,3M﹣M=3101﹣1,所以M=,即1+3+32+33+…+3100=,仿照以上推理计算:1+5+52+53+…+52015的值是    

观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是 

观察下列图形,它们是按一定规律排列的,依照此规律,第5个图形有        个太阳。

,对任意自然数n都成立,则      ;计算:      

如图,在同一平面上,两块斜边相等的直角三角板Rt△ABC与Rt△ADC拼在一起,使斜边AC完全重合,且顶点B,D分别在AC的两旁,∠ABC=∠ADC=90°,∠CAD=30°,AB=BC=4cm.

(1)填空:AD=   (cm),DC=   (cm);
(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿A→D,C→B的方向运动,当N点运动 到B点时,M,N两点同时停止运动,连结MN,求当M,N点运动了x秒时,点N到AD的距离(用含x的式子表示);
(3)在(2)的条件下,取DC中点P,连结MP,NP,设△PMN的面积为y(cm2),在整个运动过程中,△PMN的面积y存在最大值,请求出这个最大值.
(参考数据:sin75°=,sin15°=

如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,AB=BC=6cm,OD=3cm开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动。

(1)当B与O重合的时候,求三角板运动的时间;
(2)如图2,当AC与半圆相切时,求AD;
(3)如图3,当AB和DE重合时,求证:=CG·CE.

如图1,关于的二次函数y=-+bx+c经过点A(-3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上。

(1)求抛物线的解析式;
(2)DE上是否存在点P到AD的距离与到轴的距离相等,若存在求出点P,若不存在请说明理由;
(3)如图2,DE的左侧抛物线上是否存在点F,使2=3,若存在求出点F的坐标,若不存在请说明理由。

在Rt△ABC中,∠A=90°,AC=AB=4, D,E分别是AB,AC的中点.若等腰Rt△绕点A逆时针旋转,得到等腰Rt△,设旋转角为,记直线的交点为P.

(1)如图1,当时,线段的长等于        ,线段的长等于        ;(直接填写结果)
(2)如图2,当时,求证:,且
(3)①设BC的中点为M,则线段PM的长为        ;②点P到AB所在直线的距离的最大值为        .(直接填写结果)

如图,过原点的直线与反比例函数的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA.

(1)四边形ABCD一定是        四边形;(直接填写结果)
(2)四边形ABCD可能是矩形吗?若可能,试求此时之间的关系式;若不可能,说明理由;
(3)设P(),Q()()是函数图象上的任意两点,,试判断的大小关系,并说明理由.


如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.

(1)试探究筝形对角线之间的位置关系,并证明你的结论;
(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD,AC为对角线,BD=8.
①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在, 请说明理由;
②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE.当四边形ABED为菱形时,求点F到AB 的距离.

(为方便答题,可在答题卡上画出你认为必要的图形)
如图,过原点的直线与反比例函数的图象分别交于两点A,C和B,D,连结AB,BC,CD,DA.

(1)四边形ABCD一定是        四边形;(直接填写结果)
(2)四边形ABCD可能是矩形吗?若可能,试求此时k1和k2之间的关系式;若不可能,说明理由;
(3)设P(),Q()(x2 > x1 > 0)是函数图象上的任意两点,,试判断的大小关系,并说明理由.

如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,运动时间为t秒(0<t<),连接MN.

(1)若△BMN与△ABC相似,求t的值;
(2)连接AN,CM,若AN⊥CM,求t的值.

如图,在平面直角坐标系中,⊙A与x轴相交于C(﹣2,0),D(﹣8,0)两点,与y轴相切于点B(0,4).

(1)求经过B,C,D三点的抛物线的函数表达式;
(2)设抛物线的顶点为E,求证:直线CE与⊙A相切;
(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.

如图,折叠矩形OABC的一边BC,使点C落在OA边的点D处,已知折痕BE=,且,以O为原点,OA所在的直线为x轴建立如图所示的平面直角坐标系,抛物线l:经过点E,且与AB边相交于点F.

(1)求证:△ABD∽△ODE;
(2)若M是BE的中点,连接MF,求证:MF⊥BD;
(3)P是线段BC上一点,点Q在抛物线l上,且始终满足PD⊥DQ,在点P运动过程中,能否使得PD=DQ?若能,求出所有符合条件的Q点坐标;若不能,请说明理由.

在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(﹣2,﹣4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有有无数多个.
(1)若点M(2,a)是反比例函数(k为常数,)图象上的“理想点”,求这个反比例函数的表达式;
(2)函数(m为常数,)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号