游客
首页 / 试卷库 / 高中数学 / 高三 / 专题竞赛

高考数学文二轮专题复习与测试选修4-1几何证明选讲练习卷

2021-12-08    10    674   

如图,在正△ABC中,点DE分别在边BCAC上,且BDBCCECAADBE相交于点P,求证:
 
(1)PDCE四点共圆;
(2)APCP.

如图,DE分别为△ABCABAC的中点,直线DE交△ABC的外接圆于FG两点,若CFAB,证明:
 
(1)CDBC
(2)△BCD∽△GBD.

如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点EDB垂直BE交圆于点D.
 
(1)证明:DBDC
(2)设圆的半径为1,BC,延长CEAB于点F,求△BCF外接圆的半径.

如图,AB是⊙O的直径,BE为⊙O的切线,点C为⊙O上不同于AB的一点,AD为∠BAC的平分线,且分别与BC交于H,与⊙O交于D,与BE交于E,连接BDCD.
 
(1)求证:BD平分∠CBE
(2)求证:AH·BHAE·HC.

如图,已知PE切⊙O于点E,割线PBA交⊙OAB两点,∠APE的平分线和AEBE分别交于点CD.

求证:(1)CEDE;(2).

如图,圆O的半径OC垂直于直径AB,弦CD交半径 OAE,过D的切线与BA的延长线交于M.
 
(1)求证:MDME
(2)设圆O的半径为1,MD,求MACE的长.

如图,AB为⊙O的直径,直线CD与⊙O相切于EAD垂直CDDBC垂直CDCEF垂直ABF,连接AEBE.证明:
 
(1)∠FEB=∠CEB
(2)EF2AD·BC.

如图,过圆O外一点P作该圆的两条割线PABPCD,分别交圆O于点ABCD,弦ADBC交于点Q,割线PEF经过点Q交圆O于点EF,点MEF上,且∠BAD=∠BMF.

(1)求证:PA·PBPM·PQ
(2)求证:∠BMD=∠BOD.

如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点DEF分别为弦AB与弦AC上的点,且BC·AEDC·AFBEFC四点共圆.
 
(1)证明:CA是△ABC外接圆的直径;
(2)若DBBEEA,求过BEFC四点的圆的面积与△ABC外接圆面积的比值.

如图,AB是⊙O的直径,BC是⊙O的切线,B为切点,OC平行于弦AD,连结CD.
 
(1)求证:CD是⊙O的切线;
(2)过点DDEAB于点E,交AC于点P,求证:P点平分线段DE.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号