如果输入,那么执行下图中算法后的输出结果是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
已知命题:
,
,则( )
A.¬![]() ![]() ![]() |
B.¬![]() ![]() ![]() |
C.¬![]() ![]() ![]() |
D.¬![]() ![]() ![]() |
某单位有职工人,其中青年职工
人,中年职工
人,老年职工
人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本容量为20,则样本中的中年职工的容量为( )
A.4 | B.5 | C.6 | D.7 |
若命题“”为假,且“
”为假,则( )
A.“![]() |
B.![]() |
C.![]() |
D.不能判断![]() |
命题“若,则
”的逆否命题是( )
A.若![]() ![]() |
B.若![]() ![]() |
C.若![]() ![]() |
D.若![]() ![]() |
某同学设计下面的程序框图用以计算和式的值,则在判断框中应填写( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
已知回归直线的
估计值为0.2,样本点的中心为(4,5),则回归直线方程为( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
从装有个白球和
个蓝球的口袋中任取
个球,那么对立的两个事件是( )
A.“恰有一个白球”与“恰有两个白球” |
B.“至少有一个白球”与“至少有—个蓝球” |
C.“至少有—个白球”与“都是蓝球” |
D.“至少有一个白球”与“都是白球” |
设命题甲:|x-2|<3,命题乙:,那么甲是乙的( )
A.充分而不必要条件 | B.必要而不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
掷两枚骰子,出现点数之和为的概率是( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,问其中不公平的游戏是( )
游戏![]() |
游戏![]() |
游戏![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
取![]() ![]() |
取![]() |
取![]() ![]() |
取出的两个球同色→甲胜 |
取出的球是黑球→甲胜 |
取出的两个球同色→甲胜 |
取出的两个球不同色→乙胜 |
取出的球是白球→乙胜 |
取出的两个球不同色→乙胜 |
A.游戏和游戏
B.游戏
C.游戏
D.游戏
在集合中,任取一个偶数
和一个奇数
,构成以原点为起点的向量
.从所有得到的以原点为起点的向量中,任取两个向量为邻边作平行四边形,记所有作成的平行四边形的个数为
,其中面积等于
的平行四边形的个数为
,则
( )
A.![]() |
B.![]() |
C.![]() |
D.![]() |
随机抽取某中学位高三同学,调查他们春节期间购书费用(单位:元),获得数据的茎叶图如图,这
位同学购书费用的中位数是__________.
已知,当
时,用秦九韶算法求
=______________.
一段细绳长10cm,把它拉直后随机剪成两段,则两段长度都超过4的概率为__________________.
给出下列结论:
①命题“”的否定是“
”;
②命题“有些正方形是平行四边形”的否定是“所有正方形不都是平行四边形”;
③命题“是对立事件”是命题“
是互斥事件”的充分不必要条件;
④若,
是实数,则“
且
”是“
且
”的必要不充分条件.
其中正确结论的是 _________________.
名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示.
(1)求频率分布直方图中的值;
(2)分别求出成绩落在与
中的学生人数;
(3)从成绩在的学生中任选
人,求此
人的成绩都在
中的概率.
(本小题满分12分)设命题p:,命题q:关于
的方程
的一根大于1,另一根小于1,命题“
”为假命题,命题“
”为真命题,求实数
的取值范围.
给出个数,
,
,
,
,
, ,其规律是:第
个数是
,第
个数比第
个数大
,第
个数比第
个数大
,第
个数比第
个数大
, ,以此类推. 要求计算这
个数的和.(1)画出的程序框图;(2)并用程序语言编程序.(要求详细的程序步骤)
(满分12分)假设关于某设备的使用年限和所支出的维修费用
(万元)有如下的统计资料:
使用年限![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
维修费用![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
若由资料知对
呈线性相关关系。
(1)请画出上表数据的散点图;
(2)请根据最小二乘法求出线性回归方程的回归系数
,
.
(3)估计使用年限为年时,维修费用是多少?
,
(本小题满分12分) 一个黑色小布袋,袋中有只黄色、
只红色的乒乓球(除颜色外其体积、质地完全相同),从袋中随机摸出
个球,
(1)求摸出的个球为红球和摸出的
个至少一球为黄球的概率分别是多少?
(2)求摸出的个球的颜色不相同的概率是多少?
(本小题满分14分)数列满足:
;
(1)证明:数列是单调递减数列的充要条件是:
;
(2)求的取值范围,使数列
是单调递增数列.