(本小题满分12分)已知关于
的一元二次函数
(Ⅰ)设集合P={1,2, 3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为
和
,求函数
在区间[
上是增函数的概率;(Ⅱ)设点(
,
)是区域
内的随机点,求函数
上是增函数的概率。
已知函数
在
处切线为
.
(1)求
的解析式;
(2)设
,
,
,
表示直线
的斜率,求证:
.
如图,已知点
是离心率为
的椭圆
:
上的一点,斜率为
的直线
交椭圆
于
,
两点,且
、
、
三点互不重合.
(1)求椭圆
的方程;(2)求证:直线
,
的斜率之和为定值.
如图,已知四棱锥
,底面
是等腰梯形,且
∥
,
是
中点,
平面
,
,
是
中点.
(1)证明:平面
平面
;(2)求点
到平面
的距离.
对某电子元件进行寿命追踪调查,所得样本数据的频率分布直方图如下.
(1)求
,并根据图中的数据,用分层抽样的方法抽取
个元件,元件寿命落在
之间的应抽取几个?
(2)从(1)中抽出的寿命落在
之间的元件中任取
个元件,求事件“恰好有一个元件寿命落在
之间,一个元件寿命落在
之间”的概率.
已知
为锐角,且
,函数
,数列
的首项
,
.
(1)求函数
的表达式;(2)求数列
的前
项和
.