游客
题文

(本小题满分14分) 已知函数f (x)=ex-k-x,其中x∈R. (1)当k=0时,若g(x)= 定义域为R,求实数m的取值范围;(2)给出定理:若函数f (x)在[a,b]上连续,且f (a)·f (b)<0,则函数y=f (x)在区间(a,b)内有零点,即存在x0∈(a,b),使f (x0)=0;运用此定理,试判断当k>1时,函数f (x)在(k,2k)内是否存在零点.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知圆C:,是否存在斜率为1的直线l,使l被圆C截得的弦AB为直径的圆过原点,若存在求出直线l的方程,若不存在说明理由。

设圆的方程为,直线的方程为
(1)求关于对称的圆的方程;
(2)当变化且时,求证:的圆心在一条定直线上,并求所表示的一系列圆的公切线方程.

设正方形ABCD的外接圆方程为x2+y2–6x+a=0(a<9),C、D点所在直线l的斜率为,求外接圆圆心M点的坐标及正方形对角线AC、BD的斜率。

已知圆C:x+y+2x-6y+1=0,圆C:x+y-4x+2y-11=0,求两圆的公共弦所在的直线方程及公共弦长.

a为何值时,圆: x2+y2-2ax+4y+(a2-5)=0和圆: x2+y2+2x-2ay+(a2-3)=0相交

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号