行星的平均密度为,靠近行星表面的卫星,其运行周期为T,试证明
为一常数。
(16分)如图所示,一长为L=0.8m不可伸长的轻绳,一端拴着质量为m的小球A,另一端拴于天花板上的O点。现将轻绳水平拉直,并将小球A由静止释放,当小球A运动到最低点时,恰好与放在光滑水平地面上质量为2m的小球B正碰,已知碰撞过程中无机械能损失,碰后A球反弹。以地面为零势能面,重力加速度g="10" m/s2。求:
(1)小球B碰后的速度大小v;
(2)小球A在碰撞过程中损失的机械能与碰前机械能之比。
两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x轴和y轴,交点O为原点,如图所示,在y>0,0<x<a的区域有垂直于纸面向里的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B。在O点有一处小孔,一束质量为m、带电量为q(q>0)的粒子沿x轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮,入射粒子的速度可取从零到某一最大值之间的各种数值。已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为,其中T为该粒子在磁感应强度为B的匀强磁场中作圆周运动的周期。试求两个荧光屏上亮线的范围(不计重力的影响)。
在平面上有一片稀疏的电子处在
的范围内,从
负半轴的远处以相同的速率
沿着
轴方向平行地向
轴射来. 试设计一个磁场,使得所有电子均通过原点,然后扩展到在
范围内继续沿着
正方向飞行(如图,虚线内范围)
如图所示,两个金属轮A1、A2,可绕通过各自中心并与轮面垂直的固定的光滑金属细轴O1和O2转动,O1和O2相互平行,水平放置。每个金属轮由四根金属辐条和金属环组成,A1轮的辐条长为a1、电阻为R1,A2轮的辐条长为a2、电阻为R2,连接辐条的金属环的宽度与电阻都可以忽略。半径为a0的绝缘圆盘D与A1同轴且固连在一起。一轻细绳的一端固定在D边缘上的某点,绳在D上绕足够匝数后,悬挂一质量为m的重物P。当P下落时,通过细绳带动D和A1绕O1轴转
动。转动过程中,A1、A2保持接触,无相对滑动;两轮与各自细轴之间保持良好的电接触;两细轴通过导线与一阻值为R的电阻相连。除R和A1、A2两轮中辐条的电阻外,所有金属的电阻都不计。整个装置处在磁感应强度为B的匀强磁场中,磁场方向与转轴平行。现将P释放,试求P匀速下落时的速度。
两百多年来,自行车作为一种便捷的交通工具,已经融入人们的社会生活之中,骑自行车出行,不仅可以减轻城市交通压力和减少汽车尾气污染,而且还可以作为一项很好的健身运动。
(1)如图为一种早期的自行车,这种不带链条传动的自行车前轮的直径很大,这样的设计在当时主要是为了()
A. | 提高速度 |
B. | 提高稳定性 |
C. | 骑行方便 |
D. | 减小阻力 |
(2)自行车的设计蕴含了许多物理知识,利用所学知识完成下表
自行车的设计 |
目的(从物理知识角度) |
车架用铝合金、钛合金代替钢架 |
减轻车重 |
车胎变宽 |
|
自行车后轮外胎上的花纹 |
(3)小明同学在学习了圆周运动的知识后,设计了一个课题,名称为:快速测量自行车的骑行速度。他的设想是:通过计算踏脚板转动的角速度,推算自行车的骑行速度。经过骑行,他得到如下的数据:在时间
内踏脚板转动的圈数为
,那么脚踏板转动的角速度
=;要推算自行车的骑行速度,还需要测量的物理量有;自行车骑行速度的计算公式
=。
(4)与普通自行车相比,电动自行车骑行更省力。下表为某一品牌电动自行车的部分技术参数。
在额定输出功率不变的情况下,质量为60
的人骑着此自行车沿平直公路行驶,所受阻力恒为车和人总重的0.04倍。当此电动车达到最大速度时,牵引力为
,当车速为2
时,其加速度为
(
)。
规格 |
后轮驱动直流永磁铁电机 |
||
车型 |
14电动自行车 |
额定输出功率 |
200 |
整车质量 |
40 | 额定电压 |
48 |
最大载重 |
120 | 额定电流 |
4.5 |
(5)以自行车代替汽车出行,可以减少我们现代生活中留下的"磁足迹",积极应对全球气候变暖的严峻挑战。我们的各种行为留下的"磁足迹"可以用直观的"磁足迹计数器"进行估算。比如:
开车的二氧化碳排放量(
)=汽油消耗升数×2.2 |
设骑车代替开车出行100 ,可以节约9 ,则可以减排的二氧化碳越()
A. |
100 |
B. |
20 |
C. |
9 |
D. |
2.2 |