(本小题满分12分)已知,
,且
.
(I)将表示成
的函数
,并求
的最小正周期;
(II)记的最大值为
,
、
、
分别为
的三个内角
、
、
对应的边长,若
且
,求
的最大值.
(本小题满分14分)
已知数列中的各项均为正数,且满足
.记
,数列
的前
项和为
,且
.
(1)证明是等比数列;
(2)求数列的通项公式;
(3)求证:.
(本小题满分14分)
已知函数在
处有极小值
。
(1)求函数的解析式;
(2)若函数在
只有一个零点,求
的取值范围。
(本小题满分14分)
如图,在四面体PABC中,PA=PB,CA=CB,D、E、F、G分别是PA,AC、CB、BP的中点.
(1)求证:D、E、F、G四点共面;
(2)求证:PC⊥AB;
(3)若△ABC和△PAB都是等腰直角三角形,且AB=2,,求四面体PABC的体积.
(本小题满分14分)
已知动圆过定点,且与直线
相切.
(1)求动圆的圆心轨迹的方程;
(2) 是否存在直线:
,并与轨迹
交于
两点,且满足
?若存在,求出直线
的方程;若不存在,说明理由.