(本小题满分14分)如图某一几何体的展开图,其中是边长为6的正方形,
,
,
,点
、
、
、
及
、
、
、
共线.(Ⅰ)沿图中虚线将它们折叠起来,使
、
、
、
四点重合为点
,请画出其直观图;
(Ⅱ)求二面角的大小;(Ⅲ)试问需要几个这样的几何体才能拼成一个棱长为6的正方体
?
(1)求证;
(2)求证平面
。
(1)请在图中作出过且平行于平面
的一个截面,并说明理由;
(2)求所作截面图形的面积。
(本小题满分16分)已知函数.
(Ⅰ)当时,求证:函数
在
上单调递增;
(Ⅱ)若函数有三个零点,求
的值;
(Ⅲ)若存在,使得
,试求
的取值范围.
(本小题满分16分)已知数列是以
为公差的等差数列,数列
是以
为公比的等比数列.
(Ⅰ)若数列的前
项和为
,且
,
,求整数
的值;
(Ⅱ)在(Ⅰ)的条件下,试问数列中是否存在一项
,使得
恰好可以表示为该数列中连续
项的和?请说明理由;
(Ⅲ)若(其中
,且(
)是(
)的约数),
求证:数列中每一项都是数列
中的项.
(本小题满分16分)已知⊙和点
.
(Ⅰ)过点向⊙
引切线
,求直线
的方程;
(Ⅱ)求以点为圆心,且被直线
截得的弦长4的⊙
的方程;
(Ⅲ)设为(Ⅱ)中⊙
上任一点,过点
向⊙
引切线,切点为Q. 试探究:平面内是否存在一定点
,使得
为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.