如图13所示,固定在水平面上的斜面其倾角θ=37º,长方体木块A的MN面上钉着一颗小钉子,质量m=1.5kg的小球B通过一细线与小钉子相连接,细线与斜面垂直。木块与斜面间的动摩擦因数μ=0.50。现将木块由静止释放,木块将沿斜面下滑。求在木块下滑的过程中小球对木块MN面的压力。(取g=10m/s2,sin37º=0.6,cos37º=0.8)
(1)等腰三角形△abc为一棱镜的横截面, ;一平行于bc边的细光束从ab边射入棱镜,在bc边反射后从ac边射出,出射光分成了不同颜色的两束,甲光的出射点在乙光的下方,如图所示。不考虑多次反射。下列说法正确的是( )
A. |
甲光的波长比乙光的长 |
B. |
甲光的频率比乙光的高 |
C. |
在棱镜中的传播速度,甲光比乙光的大 |
D. |
该棱镜对甲光的折射率大于对乙光的折射率 |
E. |
在棱镜内be边反射时的入射角,甲光比乙光的大 |
(2)分别沿x轴正向和负向传播的两列简谐横波P、Q的振动方向相同振幅均为5cm,波长均为8m,波速均为4m/s。 时刻,P波刚好传播到坐标原该处的质点将自平衡位置向下振动;Q波刚好传到 处,该处的质点将自平衡位置向上振动。经过一段时间后,两列波相遇。
(i)在答题卡给出的坐标图上分别画出P、Q两列波在 时刻的波形图(用虚线,Q波用实线);
(ii)求出图示范围内的介质中,因两列波干涉而振动振幅最大和振幅最小的平衡位置。
(1)在一汽缸中用活塞封闭着一定量的理想气体,发生下列缓慢变化过程,气体一定与外界有热量交换的过程是( )
A. |
气体的体积不变,温度升高 |
B. |
气体的体积减小,温度降低 |
C. |
气体的体积减小,温度升高 |
D. |
气体的体积增大,温度不变 |
E. |
气体的体积增大,温度降低 |
(2)一高压舱内气体的压强为1.2个大气压,温度为17℃,密度为 。
(i)升高气体温度并释放出舱内部分气体以保持压强不变,求气体温度升至27℃时内气体的密度;
(ii)保持温度27℃不变,再释放出舱内部分气体使舱内压强降至1.0个大气压,求舱内气体的密度。
类比是研究问题的常用方法。
(1)情境1:物体从静止开始下落,除受到重力作用外,还受到一个与运动方向相反的空气阻力 (k为常量)的作用。其速率v随时间t的变化规律可用方程 (①式)描述,其中 为物体质量, 为其重力。求物体下落的最大速率 。
(2)情境2:如图1所示,电源电动势为 ,线圈自感系数为 ,电路中的总电阻为 。闭合开关 ,发现电路中电流 随时间 的变化规律与情境1中物体速率 随时间 的变化规律类似。类比①式,写出电流 随时间 变化的方程;并在图2中定性画出 图线。
(3)类比情境1和情境2中的能量转化情况,完成下表。
情境1 |
情境2 |
物体重力势能的减少量 |
|
物体动能的增加量 |
|
电阻R上消耗的电能 |
(1)如图所示,一个轻质弹簧下端挂一小球,小球静止。现将小球向下拉动距离A后由静止释放,并开始计时,小球在竖直方向做简谐运动,周期为T。经 时间,小球从最低点向上运动的距离_____ (选填“大于”、“小于”或“等于”);在 时刻,小球的动能______(选填“最大”或“最小”)。
(2)如图所示,一种光学传感器是通过接收器Q接收到光的强度变化而触发工作的。光从挡风玻璃内侧P点射向外侧M点再折射到空气中,测得入射角为 ,折射角为 ;光从P点射向外侧N点,刚好发生全反射并被Q接收,求光从玻璃射向空气时临界角 的正弦值表达式。
(1)在高空飞行的客机上某乘客喝完一瓶矿泉水后,把瓶盖拧紧。下飞机后发现矿泉水瓶变瘪了,机场地面温度与高空客舱内温度相同。由此可判断,高空客舱内的气体压强______(选填“大于”、“小于”或“等于”)机场地面大气压强:从高空客舱到机场地面,矿泉水瓶内气体的分子平均动能______(选填“变大”、“变小”或“不变”)。
(2)为方便抽取密封药瓶里的药液,护士一般先用注射器注入少量气体到药瓶里后再抽取药液,如图所示,某种药瓶的容积为0.9mL,内装有0.5mL的药液,瓶内气体压强为 ,护士把注射器内横截面积为 、长度为 、压强为 的气体注入药瓶,若瓶内外温度相同且保持不变,气体视为理想气体,求此时药瓶内气体的压强。