(本小题满分13分)已知数列中,
,数列
中,
.(Ⅰ)求数列
通项公式;(Ⅱ)求数列
通项公式以及前
项的和.
如图,四边形ABCD中,为正三角形,
,
,AC与BD交于O点.将
沿边AC折起,使D点至P点,已知PO与平面ABCD所成的角为
,且P点在平面ABCD内的射影落在
内.
(Ⅰ)求证:平面PBD;
(Ⅱ)若已知二面角的余弦值为
,求
的大小.
已知函数
(Ⅰ)当时,求函数
的图象在点
处的切线方程;
(Ⅱ)讨论函数的单调性;
在奥运会射箭决赛中,参赛号码为1~4号的四名射箭运动员参加射箭比赛.
(Ⅰ)通过抽签将他们安排到1~4号靶位,试求恰有两名运动员所抽靶位号与其参赛号码相同的概率;
(Ⅱ)记1号、2号射箭运动员射箭的环数为(
所有取值为0,1,2,3...,10)的概率分别为
、
.根据教练员提供的资料,其概率分布如下表:
![]() |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
![]() |
0 |
0 |
0 |
0 |
0.06 |
0.04 |
0.06 |
0.3 |
0.2 |
0.3 |
0.04 |
![]() |
0 |
0 |
0 |
0 |
0.04 |
0.05 |
0.05 |
0.2 |
0.32 |
0.32 |
0.02 |
①1,2号运动员各射箭一次,求两人中至少有一人命中9环的概率;
②判断1号,2号射箭运动员谁射箭的水平高?并说明理由.
已知函数,
(Ⅰ)求函数的最大值和最小正周期;
(Ⅱ)设的内角
的对边分别
且
,
,若
求
的值.
设f(x)=lnx+-1,证明:
(1)当x>1时,f(x)<(x-1);
(2)当1<x<3时,f(x)<.