一个质点正在作匀加速度速直线运动,用固定在地面上的照相机对该质点进行闪光照相,闪光时间间隔为1s。分析照片得到的数据,发现质点在第1次、第2次闪光的时间间隔内移动了2m;在第3次、第4次闪光的时间间隔内移动了8m。由此可以求得( )
A.第1次闪光时质点的速度 |
B.质点运动的加速度 |
C.从第2次闪光到第3次闪光这段时间内质点的位移 |
D.质点运动的初速度 |
如图被誉为“豪小子”的华裔球员林书豪在NBA赛场上投二分球时的照片。现假设林书豪准备投二分球前先曲腿下蹲,再竖直向上跃起,已知林书豪的质量为m,双脚离开地面时的速度为v,从开始下蹲到跃起过程中重心上升的高度为h,则下列说法正确的是
A.从地面跃起过程中,地面对他所做的功为0 |
B.从地面跃起过程中,地面对他所做的功为![]() |
C.从下蹲到离开地面上升过程中,他的机械能守恒 |
D.离开地面后,他在上升过程中处于超重状态;在下落过程中处于失重状态 |
一个倾角为q(0°<q<90°)的光滑斜面固定在竖直的光滑墙壁上,一铁球在一水平推力F作用下静止于墙壁与斜面之间,与斜面的接触点为A,如图所示。已知球的半径为R,推力F的作用线过球心,则下列判断正确的是:
A.推力F增大,斜面对球的支持力一定增大 |
B.斜面对球的支持力一定大于球的重力 |
C.推力F的最小值等于G cotq |
D.推力F增大,地面对斜面的支持力不变 |
在“探究弹性势能的表达式”的活动中,为计算弹簧弹力所做的功,把拉伸弹簧的过程分为很多小段,拉力在每小段可以认为是恒力,用各小段做功的代数和代表弹力在整个过程所做的功,物理学中把这种研究方法叫做“微元法”。下列几个实例中应用到这一思想方法的是
A.在不需要考虑物体本身的大小和形状时,用点来代替物体,即质点 |
B.一个物体受到几个力共同作用产生的效果与某一个力产生的效果相同,这个力叫做那几个力的合力 |
C.在推导匀变数直线运动位移公式时,把整个运动过程划分成很多小段,每一小段近似看作匀速直线运动,然后把各小段的位移相加 |
D.在探究加速度与力和质量之间关系时,先保持质量不变探究加速度与力的关系,再保持力不变探究加速度与质量的关系 |
一正方形金属线框位于有界匀强磁场区域内,线框平面与磁场垂直,线框的右边紧贴着磁场边界,如图甲所示。t=0时刻对线框施加一水平向右的外力F,让线框从静止开始做匀加速直线运动穿过磁场。外力F随时间t变化的图线如图乙所示。已知线框质量m=1kg、电阻R=1Ω。以下说法正确的是
A.做匀加速直线运动的加速度为1m/s2 |
B.匀强磁场的磁感应强度为![]() |
C.线框穿过磁场过程中,通过线框的电荷量为![]() |
D.线框穿过磁场的过程中,线框上产生的焦耳热为 1.5J |
一宇航员到达半径为R,密度均匀的某星球表面,做如下实验,用不可伸长的轻绳拴一质量为m的小球,上端固定在O点,如图甲所示,在最低点给小球某一初速度,使其绕O点在竖直平面内做圆周运动,测得绳的拉力大小随时间的变化规律如图乙所示,F1=7F2,设R、m、引力常量G、F1、F2均为己知量,忽略各种阻力,以下说法正确的是
A.小球在最高点的最小速度为零 |
B.卫星绕该星的第一宇宙速度为![]() |
C.该星球表面的重力加速度为![]() |
D.星球的质量为![]() |