某游乐场中有一种叫“空中飞椅”的游乐设施,其基本装置是将绳子上端固定在转盘的边缘上,绳子下端连接座椅,人坐在座椅上随转盘旋转而在空中飞旋。若将人和座椅看成是一个质点,则可简化为如图所示的物理模型。其中P为处于水平面内的转盘,可绕竖直转轴转动,设绳长l="10" m,质点的质量m= 60kg,转盘静止时质点与转轴之间的距离d =4m。转盘逐渐加速转动,经过一段时间后质点与转盘一起做匀速圆周运动,此时绳与竖直方向的夹角
。(不计空气阻力及绳重,绳子不可伸长,sin
="0." 6,cos
="0." 8,g=10
)求:
(1)质点与转盘一起做匀速圆周运动时转盘的角速度及绳子的拉力;
(2)质点从静止到做匀速圆周运动的过程中,绳子对质点做的功。
足够长的竖直光滑金属平行导轨宽1m,放在B=0.4T的水平匀强磁场中,如图连接,电池的电动势E=13V,内阻r=0.1,金属杆ab的质量m=0.2kg,在杆的中点用细绳系一球,其质量M=1kg,密度为ρ=5g/
.电阻R=0.3
,其余电阻不计.开始球全浸在足够深的水中,不计水的阻力,取g=10m/
.当k闭合后,问:
①球在水中如何运动?其稳定速度多大?
②当球出水后,又如何运动?其稳定速度多大?
如图所示,在磁感强度为B=T、方向竖直向下的匀强磁场中,放一个由导线组成的线框abcd,其中ab长0.4m,bc长0.4m,ab这段导线的质量为100g,bc、ad导线的质量忽略不计,线框回路的总电阻为0.16Ω,线框可绕固定不动的cd边转动,已知线框abcd从与cd在同一水平面内开始释放,经过0.4s转到最低位置
求ab到达最低位置时线框中的电流的瞬时值.
如图所示,一矩形线圈面积为400、匝数为100匝,绕线圈的中心轴
以角速度
匀速转动,匀强磁场磁感强度为
T,转动轴与磁感线垂直。线圈电阻为1Ω,
=3Ω,
=6Ω,
=12Ω,其余电阻不计,电键S断开。当线圈转到线圈平面与磁感线平行时,所受磁场力的力矩为16N·m,求:
(1)线圈转动的角速度ω。
(2)感应电动势的最大值。
(3)电键S闭合后,线圈的输出功率。
如图所示为足够长的光滑斜面导轨MM'和NN',斜面的倾角θ=30°,导轨相距为d,上端M和N用导线相连,并处于垂直斜面向上的均匀磁场中,磁场的磁感强度的大小随时间t的变化规律为=kt,其中k为常数。质量为m的金属棒ab垂直导轨放在M、N附近,从静止开始下滑,通过的路程为L时,速度恰好达到最大,此时磁场的磁感强度的大小为
.设金属棒的电阻为R,导轨和导线的电阻不计。求:
(1)金属棒达到的最大速度.
(2)金属棒从静止开始下滑L的过程中所产生的热量。
如图,半径为R的金属圆环,处于磁感强度为B,方向垂直于环平面的匀强磁场中,一根金属杆ab在圆环上沿圆环平面在拉力的作用下以速度v匀速向右运动。设金属圆环和杆的单位长度的电阻均为,当ab滑至图示位置时,求拉力的瞬时功率P=?