在平面直角坐标系中,已知A1(-3,0),A2(3,0),P(x,y),M(,0),若实数λ使向量,λ,满足λ2·()2=·。(1)求点P的轨迹方程,并判断P点的轨迹是怎样的曲线;(2)当λ=时,过点A1且斜率为1的直线与此时(1)中的曲线相交的另一点为B,能否在直线x=-9上找一点C,使ΔA1BC为正三角形(请说明理由)。
已知函数,且是函数的一个极小值点. (Ⅰ)求实数的值; (Ⅱ)求在区间上的最大值和最小值.
已知曲线:. (1)若曲线是焦点在轴上的椭圆,求的取值范围; (2)设,过点的直线与曲线交于,两点,为坐标原点,若为直角,求直线的斜率.
已知函数. (1)当时,的图象在点处的切线平行于直线,求的值; (2)当时,在点处有极值,为坐标原点,若三点共线,求的值.
已知圆的圆心在直线上,且与轴交于两点,. (1)求圆的方程; (2)求过点的圆的切线方程.
如图,矩形所在的平面与正方形所在的平面相互垂直,是的中点. (1)求证:∥平面; (2)求证:平面⊥平面.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号