设数列{an}的首项a1=1,前n项和Sn满足关系式:3tSn-(2t+3)Sn-1=3t(t>0,n=2,3,4…).(1)求证: 数列{an}是等比数列;(2)设数列{an}的公比为f(t),作数列{bn},使b1=1,bn=f()(n=2,3,4…),求数列{bn}的通项bn;(3)求和: b1b2-b2b3+b3b4-…+b2n-1b2n-b2nb2n+1.
如图,在多面体中,四边形是正方形,.. (Ⅰ) 求证:; (Ⅱ)求二面角的余弦值的大小.
已知在数列中,,,. (Ⅰ)证明数列是等差数列,并求的通项公式; (Ⅱ)设数列的前项和为,证明:.
已知. (Ⅰ)求函数的单调递增区间; (Ⅱ)设,且,求.
已知函数,其中是的导函数. (Ⅰ)求曲线在点处的切线方程; (Ⅱ)若在上恒成立,求实数的取值范围.
已知抛物线的顶点为坐标原点,焦点为,直线与抛物线相交于两点,且线段的中点为. (Ⅰ)求抛物线的和直线的方程; (Ⅱ)若过且互相垂直的直线分别与抛物线交于,,,,求四边形面积的最小值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号