如图所示,两根间距为L=1m的金属导轨MN和PQ,电阻不计,左端向上弯曲,其余水平,水平导轨左端有宽度为d=2m,方向竖直向上的匀强磁场i,右端有另一磁场ii,其宽度为d,但方向竖直向下,两者B均为1T,有两根质量均为m=1kg,电阻均为R=1Ω,的金属棒a与b与导轨垂直放置,b棒置于磁场ii中点C,D处,导轨除C,D外(对应距离极短)其余均为光滑,两处对棒可产生总的最大静摩擦力为自重的0.2倍,a棒从弯曲导轨某处由静止释放,当只有一根棒做切割磁感线运动时,它速度的减小量与它在磁场中通过的距离成正比,即Δv∝Δx
(1)若棒a从某一高度释放,则棒a进入磁场i时恰能使棒b运动,判断棒b运动方向并求出释放高度;
(2)若将棒a从高度为0.2m的某处释放结果棒a以1m/s的速度从磁场i中穿出求两棒即将相碰时棒b所受的摩擦力;
(3)若将棒a从高度1.8m某处释放经过一段时间后棒a从磁场i穿出的速度大小为4m/s,且已知棒a穿过磁场时间内两棒距离缩短2.4m,求棒a从磁场i穿出时棒b的速度大小及棒a穿过磁场i所需的时间(左为a,右为b)
电场中某区域的电场线如图所示,A、B是电场中的两点. 一个电荷量为q = +4.0×10-8 C的点电荷在A点所受电场力FA=2.0×10-4 N,将该点电荷从A点移到B点,电场力做功W = 8.0×10-7J。求:A点电场强度的大小EA;
A、B两点间的电势差U.
如图甲,ABC为竖直放置的半径为0.1m的半圆形轨道,在轨道的最低点和最高点A、C各安装了一个压力传感器,可测定小球在轨道内侧,通过这两点时对轨道的压力FA和FC.质量为0.1kg的小球,以不同的初速度v冲入ABC轨道.(g取10m/s2)若FC和FA的关系图线如图乙所示,求:当
时小球滑经A点时的速度
,以及小球由A滑至C的过程中损失的机械能;
若轨道ABC光滑,小球均能通过C点.试推导FC随FA变化的关系式,并在图丙中画出其图线.
如图所示,一质量为m、电量为+q、重力不计的带电粒子,从A板的S点由静止开始释放,经A、B加速电场加速后,穿过中间偏转电场,再进入右侧匀强磁场区域.已知AB间的电压为U,MN极板间的电压为2U,MN两板间的距离和板长均为L,磁场垂直纸面向里、磁感应强度为B、有理想边界.求:带电粒子离开B板时速度v0的大小;
带电粒子离开偏转电场时速度v的大小与方向;
要使带电粒子最终垂直磁场右边界射出磁场,磁场的宽度d多大?
如图所示,质量为4 kg的物体静止在水平面上,物体与水平面间的动摩擦因数为0.5.物体受到大小为20 N与水平方向成37°角斜向上的拉力F作用时,沿水平面做匀加速运动,求:物体加速度的大小.
10 s末的速度和10 s内的位移.(g取10 m/s2,sin37°=0.6,cos37°=0.8)
如图所示,沿水平方向做匀变速直线运动的车厢中,悬挂小球的悬线偏离竖直方向37°角,小球和车厢相对静止,球的质量为1 kg.(g取10 m/s2,sin37°=0.6,cos37°=0.8)求车厢运动的加速度,并说明车厢的运动情况.
求悬线对球的拉力.