先阅读理解下面的例题,再按要求解答:例题:解一元二次不等式.解:∵,∴.由有理数的乘法法则“两数相乘,同号得正”,有(1) (2)解不等式组(1),得,解不等式组(2),得,故的解集为或,即一元二次不等式的解集为或.问题:求分式不等式的解集.
已知,求下列各式的值, (1);(2).
设,分别是椭圆:的左、右焦点,过斜率为1的直线与相交于、两点,且,,成等差数列, (Ⅰ)求的离心率; (Ⅱ)设点满足,求的方程。
如图,四棱锥的底面是一个边长为4的正方形,侧面是正三角形,侧面底面, (Ⅰ)求四棱锥的体积; (Ⅱ)求直线与平面所成的角的正弦值。
已知数列满足:,, (Ⅰ)求证:数列是等差数列;求的通项公式; (Ⅲ)设,求数列的前项和。
在中,角所对的边分别为.设为的面积,满足, (Ⅰ)求的大小; (Ⅱ)求的最大值。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号