如图所示,顶角θ=45°,的金属导轨 MON固定在水平面内,导轨处在方向竖直、磁感应强度为B的匀强磁场中。一根与ON垂直的导体棒在水平外力作用下以恒定速度v0沿导轨MON向左滑动,导体棒的质量为m,导轨与导体棒单位长度的电阻均匀为r。导体棒与导轨接触点的a和b,导体棒在滑动过程中始终保持与导轨良好接触。t=0时,导体棒位于顶角O处,求:
(1)t时刻流过导体棒的电流强度I和电流方向。
(2)导体棒作匀速直线运动时水平外力F的表达式。
(3)导体棒在0~t时间内产生的焦耳热Q。
(4)若在t0时刻将外力F撤去,导体棒最终在导轨上静止时的坐标x。
如图所示,在倾角为的光滑物块P斜面上有两个用轻质弹簧相连的物块A、B;C为一垂直固定在斜面上的挡板.P、C总质量为M,A、B质量均为m,弹簧的劲度系数为k,系统静止于光滑水平面.现开始用一水平力F从零开始增大作用于P.
求:物块B刚要离开C时力F.
从开始到此时物块A相对于斜面的位移D.(物块A一直没离开斜面,重力加速度为g)
如图(
)所示,在光滑绝缘水平面的
区域内存在水平向右的电场,电场强度E随时间的变化如图(
)所示.不带电的绝缘小球
静止在
点.
=0时,带正电的小球
以速度
从
点进入
区域,随后与
发生正碰后反弹,反弹速度大小是碰前的
倍,
的质量为
,带电量为q,
的质量
,
间距为
,
间距
.已知
.
1.求碰撞后小球
向左运动的最大距离及所需时间.
2.讨论两球能否在
区间内再次发生碰撞.
如图9-37-29所示,水平地面上方分布着水平向右的匀强电场.一“L”形的绝缘硬质管竖直固定在匀强电场中.管的水平部分长为l1=0.2m,离水平面地面的距离为h=5.0m,竖直部分长为l2=0.1m.一带正电的小球从管的上端口A由静止释放,小球与管间摩擦不计且小球通过管的弯曲部分(长度极短可不计)时没有能量损失,小球在电场中受到的电场力大小为重力的一半.求:小球运动到管口B时的速度大小;
小球着地点与管的下端口B的水平距离.(g=10m/s2)
如图19所示,在绝缘水平面上,相距为L的A、B两点分别固定着等量正点电荷.O为AB连线的中点,C、D是AB连线上两点,其中AC=CO=OD=DB=.一质量为m电量为+q的小滑块(可视为质点)以初动能E0从C点出发,沿直线AB向D运动,滑块第一次经过O点时的动能为n E0(n>1),到达D点时动能恰好为零,小滑块最终停在O点,求:
小滑块与水平面之间的动摩擦因数μ;
OD两点间的电势差UOD;
一匀强电场,场强方向是水平的.一个质量为m的带正电的小球,从O点出发,初速度的大小为v0,在电场力与重力的作用下,恰能沿与场强的反方向成θ角的直线运动.求小球运动到最高点时其电势能与在O点的电势能之差?