设函数
上两点
、
,若
,且
点的横坐标为
(1)求证:
点的纵坐标为定值,并求出这个值;
(2)若
,
,求
;
(3)记
为数列
的前
项和,若
对一切
都成立,试求实数
的取值范围。
已知椭圆
的离心率为
,且经过点
.
(Ⅰ)求椭圆的方程;
(Ⅱ)如果过点
的直线与椭圆交于
两点(
点与
点不重合),
①求
的值;
②当
为等腰直角三角形时,求直线
的方程.
已知直角梯形
中,
是边长为2的等边三角形,
.沿
将
折起,使
至
处,且
;然后再将
沿
折起,使
至
处,且面
面
,
和
在面
的同侧.

(Ⅰ) 求证:
平面
;
(Ⅱ) 求平面
与平面
所构成的锐二面角的余弦值.
一个口袋中装有2个白球和
个红球(
且
),每次从袋中摸出两个球(每次摸球后把这两个球放回袋中),若摸出的两个球颜色相同为中奖,否则为不中奖.
(Ⅰ) 摸球一次,若中奖概率为
,求
的值;
(Ⅱ) 若
,摸球三次,记中奖的次数为
,试写出
的分布列并求其期望.
已知向量
,
,函数
.
(Ⅰ)若方程
在
上有解,求
的取值范围;
(Ⅱ)在
中,
分别是A,B,C所对的边,当(Ⅰ)中的
取最大值且
时,求
的最小值.
已知抛物线
的焦点为
,点
是抛物线上的一点,且其纵坐标为4,
.
(Ⅰ)求抛物线的方程;
(Ⅱ) 设点
是抛物线上的两点,
的角平分线与
轴垂直,求
的面积最大时直线
的方程.