移动公司进行促销活动,促销方案是:顾客消费1000元,便可获得奖券一张,每张奖券中奖的概率为20%,中奖后移动公司返还顾客现金1000元。小李购买一部价格为2400元的手机,只能获得两张奖券,于是小李补偿50元给同事购买600元的小灵通,可以获得3张奖券,记小李抽奖后的实际开支为元。
(1)求的分布列;
(2)试说明小李出资50元便增加一张奖券是否划算?
已知函数 .
(Ⅰ)求函数
的单调区间和极值;
(Ⅱ)已知函数
的图象与函数
的图象关于直线
对称,证明当
时,
(Ⅲ)如果 ,且 ,证明
已知椭圆
的离心率
,连接椭圆的四个顶点得到的菱形的面积为4。
(1)求椭圆的方程;
(2)设直线
与椭圆相交于不同的两点
,已知点
的坐标为
,点
在线段
的垂直平分线上,且
,求
的值
如图,在长方体 中, 分别是棱 上的点, .
(1)求异面直线
与
所成角的余弦值;
(2)证明
平面
;
(3)求二面角 的正弦值.
某射手每次射击击中目标的概率是
,且各次射击的结果互不影响。
(Ⅰ)假设这名射手射击5次,求恰有2次击中目标的概率
(Ⅱ)假设这名射手射击5次,求有3次连续击中目标。另外2次未击中目标的概率;
(Ⅲ)假设这名射手射击3次,每次射击,击中目标得1分,未击中目标得0分,在3次射击中,若有2次连续击中,而另外1次未击中,则额外加1分;若3次全击中,则额外加3分,记
为射手射击3次后的总的分数,求
的分布列。
已知函数
(Ⅰ)求函数
的最小正周期及在区间
上的最大值和最小值;
(Ⅱ)若
,求
的值。