设非负等差数列的公差,记为数列的前n项和,证明: 1)若,且,则; 2)若则。
已知向量 (Ⅰ)求的最小正周期T; (Ⅱ)若,b,c分别为△ABC内角A,B,C的对边,A为锐角,上的最大值,求A,b和△ABC的面积.
在中,角、、所对应的边分别为、、,且满足. (I)求角的值; (Ⅱ)若,求的值.
分设A是单位圆和x轴正半轴的交点,P,Q是单位圆上两点,是坐标原点,且,. (Ⅰ)若点Q的坐标是,求的值; (Ⅱ)若函数,求的值域.
已知 (Ⅰ)求的值; (Ⅱ)求的值
已知向量,,,,,为正实数. (Ⅰ)若,求的值; (Ⅱ)若,求的值; (Ⅲ)当时,若,试确定与的关系式.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号