(1)求右焦点坐标是(2,0),且经过点(-2,-)的椭圆C的标准 方程;
(2)对(1)中的椭圆C,设斜率为1的直线l交椭圆C于A、B两点,AB的中点为M,证明:当直线l平行移动时,动点M在一条过原点的定直线上;
(3)利用(2)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步骤,并在图中标出椭圆的中心.
中,sin2A-sin2B-sin2C=sinBsinC.
(1)求A;
(2)若BC=3,求 周长的最大值.
已知函数 .
(1)画出 的图像;
(2)求不等式 的解集.
在直角坐标系
中,曲线
的参数方程为
为参数
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)当 时, 是什么曲线?
(2)当 时,求 与 的公共点的直角坐标.
已知函数 .
(1)当 a=1时,讨论 f( x)的单调性;
(2)当 x≥0时, f( x)≥ x 3+1,求 a的取值范围.
已知A、B分别为椭圆E: (a>1)的左、右顶点,G为E的上顶点, ,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.