(本小题满分13分已知相的中心在原点,焦点在x轴上,离心率为,点F1、F2分别是椭圆的左、右焦点,直线x=2是椭圆的准线方程,直线与椭圆C交地不同的两点A、B。 (I)求椭圆C的方程;(II)若在椭圆C上存在点Q,满足(O为坐标原点),求实数的取值范围。
设函数. (Ⅰ)解不等式; (Ⅱ)若不等式的解集为,求实数的取值范围.
极坐标系与直角坐标系有相同的长度单位,以原点为极点,以轴正半轴为极轴.已知直线的参数方程为(为参数),曲线的极坐标方程为. (Ⅰ)求的直角坐标方程; (Ⅱ)设直线与曲线交于两点,求弦长.
如图,为圆的直径,为垂直于的一条弦,垂足为,弦与交于点. (Ⅰ)证明:四点共圆; (Ⅱ)证明:.
已知函数. (Ⅰ)讨论的单调性; (Ⅱ)试确定的值,使不等式恒成立.
已知动点到定点和的距离之和为. (Ⅰ)求动点轨迹的方程; (Ⅱ)设,过点作直线,交椭圆异于的两点,直线的斜率分别为,证明:为定值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号