用同种材料制成倾角30°的斜面和长水平面,斜面长2.4m且固定,一小物块从斜面顶端以沿斜面向下的初速度v0开始自由下滑,当v0="2" m/s时,经过0.8s后小物块停在斜面上。多次改变v0的大小,记录下小物块从开始运动到最终停下的时间t,作出t-v0图象,如图14,求:
1)小物块与该种材料间的动摩擦因数为多少?
2)某同学认为,若小物块初速度为4m/s,则根据图象中t与v0成正比推导,可知小物块运动时间为1.6s。以上说法是否正确?若不正确,说明理由并解出你认为正确的结果。
设想宇航员完成了对火星表面的科学考察任务,乘坐返回舱返回围绕火星做圆周运动的轨道舱,如图所示.为了安全,返回舱与轨道舱对接时,必须具有相同的速度.求该宇航员乘坐的返回舱至少需要获得多少能量,才能返回轨道舱?
已知:返回过程中需克服火星引力做功,返回舱与人的总质量为m,火星表面重力加速度为g,火星半径为R,轨道舱到火星中心的距离为r;不计火星表面大气对返回舱的阻力和火星自转的影响.
如图所示,光滑轨道的DP段为水平轨道,PQ段为半径是R的竖直半圆轨道,半圆轨道的下端与水平的轨道的右端相切于P点.一轻质弹簧两端分别固定质量为2m的小球A和质量为m的小球B,质量为m小球C靠在B球的右侧.现用外力作用在A和C上,弹簧被压缩(弹簧仍在弹性限度内).这时三个小球均静止于距离P端足够远的水平轨道上.若撤去外力,C球恰好可运动到轨道的最高点Q.已知重力加速度为g.求撤去外力前的瞬间,弹簧的弹性势能E是多少?
![]() |
某宇航员在太空站内做了如下实验:选取两个质量分别为mA=0.1kg、mB=0.2kg的小球A、B和一根轻质短弹簧,弹簧的一端与小球A粘连,另一端与小球B接触而不粘连.现使小球A和B之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度v0=0.1m/s做匀速直线运动,如图所示.过一段时间,突然解除锁定(解除锁定没有机械能损失),两球仍沿原直线运动,从弹簧与小球B刚刚分离开始计时,经时间t=3.0s,两球之间的距离增加了s=2.7m,求弹簧被锁定时的弹性势能Ep?
如图所示,右端带有竖直挡板的木板B,质量为M,长L=1.0m,静止在光滑水平面上.一个质量为m的小木块(可视为质点)A,以水平速度滑上B的左端,而后与其右端挡板碰撞,最后恰好滑到木板B的左端.已知M=3m,并设A与挡板碰撞时无机械能损失,碰撞时间可忽略(g取
).求:
(1)A、B最后的速度;
(2)木块A与木板B间的动摩擦因数.
如图所示,AB为斜轨道,与水平面夹角30°,BC为水平轨道,两轨道在B处通过一小段圆弧相连接,一质量为m的小物块,自轨道AB的A处从静止开始沿轨道下滑,最后停在轨道上的C点,已知A点高h,物块与轨道间的动摩擦因数为μ,求:
(1)整个过程中摩擦力所做的功?
(2)物块沿轨道AB段滑动的时间t1与沿轨道BC段滑动的时间t2之比t1/t2等于多少?