已知集合A=,集合B=
(1)若AB,求实数a的取值范围;
(2)若BA,求实数a的取值范围;
(3)A、B能否相等?若能,求出a的值;若不能,试说明理由.
(本小题满分12分)
三棱锥被平行于底面的平面所截得的几何体如图所示,截面为
,
,
平面
,
,
,
为
中点.
(Ⅰ)证明:平面平面
;
(Ⅱ)求二面角的正弦值.
(本小题满分为12分)
已知函数,其图像在点
处的切线为
.
(1)求、直线
及两坐标轴围成的图形绕
轴旋转一周所得几何体的体积;
(2)求、直线
及
轴围成图形的面积.
(本小题满分为12分)
数列的前n项和为Sn ,且满足
。
(Ⅰ)计算;
(Ⅱ)猜想通项公式,并用数学归纳法证明。
设,函数
.
(Ⅰ)当时,求函数
的单调增区间;
(Ⅱ)若时,不等式
恒成立,实数
的取值范围.
(本题满分15分) 设椭圆C1:
的左、右焦点分别是F1、F2,下顶点为A,线段OA
的中点为B(O为坐标原点),如图.若抛物线C2:与y轴的交点为B,且经过F1,F2点.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设M(0,),N为抛物线C2上的一动点,过点N作抛物线C2的切线交椭圆C1于P、Q两点,求
面积的最大值.