箱中装有15张大小、重量一样的卡片,每张卡片正面分别标有1到15中的一个号码,正面号码为的卡片反面标的数字是
(卡片正反面用颜色区分).
(1)如果任意取出一张卡片,试求正面数字大于反面数字的概率;
(2)如果同时取出两张卡片,试求他们反面数字相同的概率.
(满分12分)已知点F为抛物线的焦点,点P时准线
上的动点,直线PF交抛物线C于A、B两点,若点P的纵坐标为
,点D为准线
与
轴的交点。
(Ⅰ)求直线PF的方程;
(Ⅱ)求△DAB的面积S的范围;
(Ⅲ)设,
,求证
为定值。
(满分12分)甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为。且他们是否破译出密码互不影响。若三人中只有甲破译出密码的概率为
。
(Ⅰ)求的值;
(Ⅱ)设甲、乙、丙三人中破译出密码的人数为X,求X得分布列和数学期望EX。
(满分12分)如图,在直三棱柱中,∠ACB=90°;AC=BC=CC1=2。
(1)求证:AB1⊥BC1;
(2)求点B到平面的距离;
(3)求二面角的大小。
(满分12分)在的展开式中,前三项的系数成等差数列。
(Ⅰ)求展开式中含有的项的系数;
(Ⅱ)求展开式中的有理项。
(满分10分)在曲线上求一点,使它到直线
(
为参数)的距离最小,并求出该点坐标和最小距离。