20世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级,其计算公式为
,其中,
是被测地震的最大振幅,
是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中的距离造成的偏差).
(1) 假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅
是20,此时标准地震的振幅是,计算这次地震的震级(精确到
);
(2) 5级地震给人的震感已比较明显,计算级地震的最大振幅是5级地震
的最大振幅的多少倍(精确到1).
(本小题满分12分)的内角
所对边长分别为
,已知
,
(1)求的面积
(2)若,求
的值
(本小题满分10分)选修4-5:不等式选讲
已知函数
(Ⅰ)若,解不等式
;
(Ⅱ)如果,求
的取值范围.
(本小题满分10分)选修4-4:坐标系与参数方程
已知曲线。
(Ⅰ)将曲线的参数方程化为普通方程;
(Ⅱ)若把曲线上各点的坐标经过伸缩变换
后得到曲线
,求曲线
上任意
一点到两坐标轴距离之积的最大值.
请考生在第22~24三题中任选一题作答,如果多做,则按所做的第一题记分.
(本小题满分10分)选修4-1:几何证明选讲
如图,是⊙O的一条切线,切点为
,
都是⊙O的割线,已知
证明:
(Ⅰ);
(Ⅱ)
(本小题满分12分)
设,
,
,根据等差数列前n项和公式知
;且
,
,
,
猜想,即
(Ⅰ)请根据以上方法推导的公式;
(Ⅱ)利用以上结论,计算的值.