设A(x1,y1),B(x2,y2)是椭圆=1(a>b>0)上的两点,已知向量m(
) ,n(
),若m·n=0且椭圆的离心率e=
,短轴长为2,O为坐标原点:
(Ⅰ)求椭圆的方程:
(Ⅱ)若直线AB过椭圆的焦点F(0,c),(为半焦距),求直线AB的斜k率的值:
(Ⅲ)试问:△AOB的面积是否为定值?
(本题满分12分)
已知数列的前 n项和为
,满足
,且
.
(Ⅰ)求,
;
(Ⅱ)若,求证:数列
是等比数列。
(Ⅲ)若, 求数列
的前n项和
。
(本题满分12分)
如图,四棱锥P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点。
(1)求证:CD⊥AE;
(2)求证:PD⊥面ABE。
(本题满分12分)
为调查某工厂工人生产某种产品的能力,随机抽查了一些工人某天生产产品的数量,产品数量的分组区间为[45,55), [55,65), [65,75), [75,85), [85,95),由此得到频率分布直方图如图所示,保存中不慎丢失一些数据,但已知第一组 ([45,55) ]有4人;
(Ⅰ)求被抽查的工人总人数n及图中所示m为多少;
(Ⅱ)求这些工人中一天生产该产品数量在[55,75)之间的人数是多少。
(本题满分10分)
在△ABC中,角A、B、C的对边分别为、b 、c,且满足
。
(Ⅰ)求角B的值;
(Ⅱ)设,当
取到最大值时,求角A、角C的值。
(本小题满分13分)
已知椭圆的离心率
,且短半轴
为其左右焦点,
是椭圆上动点.
(Ⅰ)求椭圆方程;
(Ⅱ)当时,求
面积;
(Ⅲ)求取值范围.