已知函数f (x) = x3 -(l-3)x2 -(l +3)x + l-1(l > 0)在区间[n, m]上为减函数,记m的最大值为m0,n的最小值为n0,且满足m0-n0 = 4.(1)求m0,n0的值以及函数f (x)的解析式;
(2)已知等差数列{xn}的首项.又过点A(0, f (0)),B(1, f (1))的直线方程为y=g(x).试问:在数列{xn}中,哪些项满足f (xn)>g(xn)?
(3)若对任意x1,x2∈[a, m0](x1≠x2),都有成立,求a的最小值.
(本小题满分13分)某市某棚户区改造建筑用地平面示意图如图所示.经规划调研确定,棚改规划建筑用地区域近似地为半径是R的圆面.该圆面的内接四边形是原棚户建筑用地,测量可知边界
万米,
万米,
万米.
(1)请计算原棚户区建筑用地的面积及圆面的半径
的值;
(2)因地理条件的限制,边界、
不能变更,而边界
、
可以调整,为了提高棚户区改造建筑用地的利用率,请在圆弧
上设计一点
;使得棚户区改造的新建筑用地
的面积最大,并求最大值.
(本小题满分13分)若向量其中
,记函数
,若函数
的图像与直线
(
为常数)相切,并且切点的横坐标依次成公差为
的等差数列.
(1)求的表达式及
的值;
(2)将函数的图像向左平移
,得到
的图像,当
时,
与
图象的交点横坐标成等比数列,求钝角
的值.
(本小题满分13分)在平面直角坐标系中,角,
的始边为
轴的非负半轴,点
在角
的终边上,点
在角
的终边上,且
.
(1)求;
(2)求的坐标并求
的值.
(本小题满分13分)等差数列满足
,
,数列
的前
项和为
,且
,求数列
和
的通项公式.
本题共14分)已知函数。
(1)求的定义域;
(2)判定的奇偶性;
(3)是否存在实数,使得
的定义域为
时,值域为
?若存在,求出实数
的取值范围;若不存在,请说明理由。