设,在平面直角坐标系中,已知向量,向量,,动点的轨迹为E. (1)求轨迹E的方程,并说明该方程所表示曲线的形状; (2)已知,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨迹E恒有两个交点A,B,且(O为坐标原点),并求出该圆的方程; (3)已知,设直线与圆C:(1<R<2)相切于A1,且与轨迹E只有一个公共点B1,当R为何值时,|A1B1|取得最大值?并求最大值.
是否存在实数,使“”是“”的充分条件?如果存在,求出的取值范围.是否存在实数,使“”是“”的必要条件.如果存在,求出的取值范围.
设全集为,在下列条件中,哪些是的充要条件? (1); (2); (3).
椭圆>>与直线交于、两点,且,其中为坐标原点. (1)求的值; (2)若椭圆的离心率满足≤≤,求椭圆长轴的取值范围.
椭圆上不同三点与焦点F(4,0)的距离成等差数列. (1)求证; (2)若线段的垂直平分线与轴的交点为,求直线的斜率.
设椭圆的中心是坐标原点,长轴在x轴上,离心率e=,已知点P(0,)到椭圆上的点的最远距离是,求这个椭圆方程。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号