游客
题文

设函数的定义域是R,对于任意实数,恒有,且当时,
(Ⅰ)求证:,且当时,有
(Ⅱ)判断在R上的单调性;
(Ⅲ)设集合,集合,若,求的取值范围.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

数列满足.
(1)求通项公式
(2)令,数列项和为
求证:当时,
(3)证明:.

已知数列中,,对于任意的,有
(1)求数列的通项公式;
(2)若数列满足:求数列的通项公式;
(3)设,是否存在实数,当时,恒成立,若存在,求实数的取值范围,若不存在,请说明理由.

已知各项均为正数的数列满足.
(Ⅰ)求证:数列是等比数列;
(Ⅱ)当取何值时,取最大值,并求出最大值;
(Ⅲ)若对任意恒成立,求实数的取值范围.

1已知函数,且,
.
(Ⅰ)求的值域
(Ⅱ)指出函数的单调性(不需证明),并求解关于实数的不等式
(Ⅲ)定义在上的函数满足,且当求方程在区间上的解的个数.

,Q=;若将适当排序后可构成公差为1的等差数列的前三项
(I)在使得有意义的条件下,试比较的大小;
(II)求的值及数列的通项;
(III)记函数的图象在轴上截得的线段长为,设,求

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号