如图所示,甲、乙两小孩各乘一辆冰车在山坡前的水平冰道上游戏。甲和他的冰车总质量=40kg,从山坡上自由下滑到水平冰道上的速度
=3m/s;乙和他的冰车总质量
=60kg,以大小为
=0.5m/s的速度迎着甲滑来,与甲相碰。若不计一切摩擦,小车也不直接接触,问相碰时,甲对乙施加的推力对乙做功在什么范围内,才能使两车分开,并且以后在原直线上运动甲、乙俩人不再相碰?(山坡与水平冰道连接处为圆弧形)
如图所示,一个水平放置的圆桶绕轴匀速转动,转动角速度
="2.5" rad/s,桶壁上P处有一圆孔,桶璧很薄,桶的半径R=2m。当圆孔运动到桶的上方时,在圆孔的正上方h=3.2m处有一个小球由静止开始下落,已知圆孔的半径略大于小球的半径。试通过计算判断小球是否和圆桶碰撞(不考虑空气阻力,g=10
)
如图所示,内半径为R的光滑圆轨道竖直放置,长度比2R稍小的轻质杆两端各固定一个可视为质点的小球A和B,把轻杆水平放入圆形轨道内,若mA=2m、mB=m,重力加速度为g,现由静止释放两球使其沿圆轨道内壁滑动,当轻杆到达竖直位置时,求:A、B两球的速度大小;
A球对轨道的压力;
某球形天体的密度为ρ0,引力常量为G.证明对环绕密度相同的球形天体表面运行的卫星,运动周期与天体的大小无关.(球的体积公式为
,其中R为球半径)
若球形天体的半径为R,自转的角速度为
,表面周围空间充满厚度
(小于同步卫星距天体表面的高度)、密度ρ=
的均匀介质,试求同步卫星距天体表面的高度.
如图所示,xoy为竖直平面内的一个直角坐标系,y为竖直方向,OA为竖直平面内的光滑抛物线轨道,其方程为:(式中x、y的单位均是国际单位m),将一个质量为m的光滑小环穿在此轨道上,从O点由静止状态沿着此轨道下滑,P是抛物线轨道上的一点,已知O和P两点连线与竖直方向的夹角为45°,求小环通过P点时的速度大小和方向.(重力加速度g=10m/s2)
如图所示,一个质量为m的小球由两根细绳拴在竖直转轴上的A、B两处,AB间距为L,A处绳长为L,B处绳长为L,两根绳能承受的最大拉力均为2mg,转轴带动小球转动。则:
当B处绳子刚好被拉直时,小球的线速度v多大?
为不拉断细绳,转轴转动的最大角速度
多大?
若先剪断B处绳子,让转轴带动小球转动,使绳子与转轴的夹角从45°开始,直至小球能在最高位置作匀速圆周运动,则在这一过程中,小球机械能的变化为多大?