某工厂在试验阶段大量生产一种零件.这种零件有A、B两项技术指标需要检测,设各项技术指标达标与否互不影响。若有且仅有一项技术指标达标的概率为,至少一项技术指标达标的概率为.按质量检验规定:两项技术指标都达标的零件为合格品.(Ⅰ)求一个零件经过检测为合格品的概率是多少?(Ⅱ)任意依次抽出5个零件进行检测,求其中至多3个零件是合格品的概率是多少?
(Ⅲ)任意依次抽取该种零件4个,设ξ表示其中合格品的个数,求Eξ与Dξ.
平行四边形中,
,
,且
,以BD为折线,把△ABD折起,
,连接AC.
(1)求证:;
(2)求二面角B-AC-D的大小.
设△ABC的内角A、B、C所对的边长分别为a、b、c,且
(1)求角A的大小;
(2)若角边上的中线AM的长为
,求△ABC的面积.
已知函数
(1)若,求曲线
在
处的切线方程;
(2)求的单调区间;
(3)设,若对任意
,均存在
,使得
,求
的取值范围.
已知椭圆的左右顶点分别为
,离心率
.
(1)求椭圆的方程;
(2)若点为曲线
:
上任一点(
点不同于
),直线
与直线
交于点
,
为线段
的中点,试判断直线
与曲线
的位置关系,并证明你的结论.
已知正项数列中,
,前n项和为
,当
时,有
.(1)求数列
的通项公式;
(2)记是数列
的前
项和,若
的等比中项,求
.