国家教育部、体育总局和共青团中央曾共同号召,在全国各级各类学校要广泛、深入地开展全国亿万大中小学生阳光体育运动.为此某网站于2010年1月18日至24日,在全国范围内进行了持续一周的在线调查,随机抽取其中200名大中小学生的调查情况,就每天的睡眠时间分组整理如下表所示:
序号(![]() |
每天睡眠时间 (小时) |
组中值(![]() |
频数 |
频率 ( ![]() |
1 |
[4,5) |
4.5 |
8 |
0.04 |
2 |
[5,6) |
5.5 |
52 |
0.26 |
3 |
[6,7) |
6.5 |
60 |
0.30 |
4 |
[7,8) |
7.5 |
56 |
0.28 |
5 |
[8,9) |
8.5 |
20 |
0.10 |
6 |
[9,10) |
9.5 |
4 |
0.02 |
![]() |
(Ⅰ)估计每天睡眠时间小于8小时的学生所占的百分比约是多少;
(Ⅱ)该网站利用上面的算法流程图,对样本数据作进一步统计
分析,求输出的S的值,并说明S的统计意义.
如图,已知斜三棱柱,
,
,
在底面
上的射影恰为
的中点
, 又知
.
(Ⅰ)求证:平面
;
(Ⅱ)求到平面
的距离;
(Ⅲ)求二面角的平面角的余弦值.
在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设分别表示甲,乙,丙3个盒中的球数.
(Ⅰ)求依次成公差大于0的等差数列的概率;
(Ⅱ)求随机变量z的概率分布列和数学期望.
已知分别是
的角
所对的边,且
,
.
(Ⅰ)若的面积等于
,求
;
(Ⅱ)若,求
的值.
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
如图所示的“8”字形曲线是由两个关于轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是
,双曲线的左、右顶点
、
是该圆与
轴的交点,双曲线与半圆相交于与
轴平行的直径的两端点.
(1)试求双曲线的标准方程;
(2)记双曲线的左、右焦点为、
,试在“8”字形 曲线上求点
,使得
是直角.
(3)过点作直线
分别交“8”字形曲线中上、下两个半圆于点
,求
的最大长度.
(本题满分16分,第(1)小题7分,第(2)小题9分)
如图,在两块钢板上打孔,用钉帽呈半球形、钉身为圆柱形的铆钉(图1)穿在一起,在没有帽的一端锤打出一个帽,使得与钉帽的大小相等.铆合的两块钢板,成为某种钢结构的配件,其截面图如图2.(单位:mm,加工中不计损失).
(1)若钉身长度是钉帽高度的2倍,求铆钉的表面积;
(2)若每块钢板的厚度为mm,求钉身的长度(结果精确到
mm).