函数是定义在
上的偶函数,当
时,
;当
时,
的图象是斜率为
,在
轴上截距为-2的直线在相应区间上的部分.
求的值;
写出函数的表达式,作出其图象并根据图象写出函数的单调区间.
(本小题满分12分)函数是定义在
上的奇函数,且
.
(1)求实数的值.(2)用定义证明
在
上是增函数;
(3)写出的单调减区间,并判断
有无最大值或最小值?如有,写出最大值或最小值(无需说明理由).
(1)二次函数满足:
为偶函数且
,求
的解析式;
(2)若函数定义域为
,求
取值范围。
(3)若函数值域为
,求
取值范围。
(4)若函数在
上单调递减,求
取值范围。
(本小题满分12分)已知函数.(1)将函数
的解析式写成分段函数;
(2)在给出的坐标系中画出的图象,并根据图象写出函数
的单调区间和值域.
已知数列的前
项和为
,且
对一切正整数
都成立.
(1)求,
的值;
(2)设,数列
的前
项和为
,当
为何值时,
最大?并求出
的最大值.
(12分)函数在一个周期内的图象如图所示,
为图象的最高点,
、
为图象与
轴的交点,且
为正三角形.
(1)求的值及函数
的值域;
(2)若,且
,求
的值.