设函数为奇函数,其图象在点
处的切线与直线
垂直,且在x=-1处取得极值.
(Ⅰ)求a,,
的值;
(Ⅱ)求函数在
上的最大值和最小值。
函数y=lg(3-4x+x2)的定义域为M,当x∈M时,求 f(x)=2x+2-3×4x的最值.
若a,b是两个不共线的非零向量,t∈R.若|a|=|b|=2且a与b夹角为60°,t为何值时,|a-tb|的值最小?
已知定义在R上的奇函数 f(x)有最小正周期2,且当x∈(0,1)时, f(x)=.
(1)求 f(x)在[-1,1]上的解析式;
(2)证明: f(x)在(0,1)上是减函数.
已知sinα=,求tan(α+
)+
.
已知函数,
(Ⅰ)若函数在
上是减函数,求实数
的取值范围;
(Ⅱ)令,是否存在实数
,当
(
是自然常数)时,函数
的最小值是3,若存在,求出
的值;若不存在,说明理由;
(III)当时,证明: