(本小题满分13分)某单位有三辆汽车参加某种事故保险,单位年初向保险公司
缴纳每辆900元的保险金.对在一年内发生此种事故的每辆汽车,单位获9000元
的赔偿(假设每辆车最多只赔偿一次)。设这三辆车在一年内发生此种事故的概率
分别为且各车是否发生事故相互独立,求一年内该单位在此保险中:
(1)获赔的概率;(4分)
(2)获赔金额的分别列与期望。(9分)
如图,平行四边形中,
,
,且
,正方形
和平面
垂直,
是
的中点.
(1)求证:平面
;
(2)求证:∥平面
;
(3)求三棱锥的体积.
如图所示,ABCD是一块边长为100 m的正方形地皮,其中AST是一半径为90 m的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P在上,相邻两边CQ、CR落在正方形的边BC、CD上.求矩形停车场PQCR面积的最大值和最小值.
已知sin2θ(1+cotθ)+cos2θ(1+tanθ)=2,θ∈(0,2π),求tanθ的值.
已知△ABC的三个内角A、B、C,求当A为何值时,取得最大值,并求出这个最大值.
已知,
,α,β∈(0,π).
(1)求tan(α+β)的值;
(2)求函数f(x)=sin(x-α)+cos(x+β)的最大值.