如图所示,半径R=0.80m的1/4光滑圆弧轨道竖直固定,过最低点的半径OC处于竖直位置.其右方有底面半径r=0.2m的转筒,转筒顶端与C等高,下部有一小孔,距顶端h=0.8m.转筒的轴线与圆弧轨道在同一竖直平面内,开始时小孔也在这一平面内的图示位置.今让一质量m=0.1kg的小物块自A点由静止开始下落后打在圆弧轨道上的B点,但未反弹,在瞬问碰撞过程中,小物块沿半径方向的分速度立刻减为O,而沿切线方向的分速度不变.此后,小物块沿圆弧轨道滑下,到达C点时触动光电装置,使转筒立刻以某一角速度匀速转动起来,且小物块最终正好进入小孔.已知A、B到圆心O的距离均为R,与水平方向的夹角均为θ=30°,不计空气阻力,g取l0m/s2.求:
(1)小物块到达C点时对轨道的压力大小FC;
(2)转筒轴线距C点的距离L;
(3)转筒转动的角速度ω.
重力势能EP=mgh实际上是万有引力势能在地面附近的近似表达式,其更精确的表达式为EP=-GMm/r,式中G为万有引力恒量,M为地球质量,m为物体质量,r为物体到地心的距离,并以无限远处引力势能为零。现有一质量为m的地球卫星,在离地面高度为H处绕地球做匀速圆周运动。已知地球半径为R,地球表面的重力加速度为g,地球质量未知,试求:
(1)卫星做匀速圆周运动的线速度;
(2)卫星的引力势能;
(3)卫星的机械能;
(4)若要使卫星能依靠惯性飞离地球(飞到引力势能为零的地方),则卫星至少要具有多大的初速度?
为了保证行车安全,不仅需要车辆有良好的刹车性能,还需要在行车过程中前后车辆保持一定的距离.驾驶手册规定,在一级公路上,允许行车速度为υ1,发现情况后需在S1距离内被刹住.在高速公路上,允许行车速度为υ2(υ2>υ1),发现情况后需在S2(S2>S1)距离内被刹住。假设对于这两种情况驾驶员允许的反应时间(发现情况到开始刹车经历的时间)与刹车后的加速度都相等,求允许驾驶员的反应时间和刹车加速度.
用同种材料制成倾角30°的斜面和长水平面,斜面长2.4m且固定,一小物块从斜面顶端以沿斜面向下的初速度v0开始自由下滑,当v0="2" m/s时,经过0.8s后小物块停在斜面上。多次改变v0的大小,记录下小物块从开始运动到最终停下的时间t,作出t-v0图象,如图所示,求:
1)小物块与该种材料间的动摩擦因数为多少?
2)某同学认为,若小物块初速度为4m/s,则根据图象中t与v0成正比推导,可知小物块运动时间为1.6s。以上说法是否正确?若不正确,说明理由并解出你认为正确的结果。
科研人员乘气球进行科学考察.气球、座舱、压舱物和科研人员的总质量为990 kg.气球在空中停留一段时间后,发现气球漏气而下降,及时堵住.堵住时气球下降速度为1 m/s,且做匀加速运动,4 s内下降了12 m.为使气球安全着陆,向舱外缓慢抛出一定的压舱物.此后发现气球做匀减速运动,下降速度在5分钟内减少3 m/s.若空气阻力和泄漏气体的质量均可忽略,重力加速度g=9.89 m/s2,求抛掉的压舱物的质量.