一半圆形玻璃砖,玻璃的折射率为,AB为其直径,长度为D,O为圆心.一束宽度恰等于玻璃砖半径的单色平行光束垂直于AB从空气射入玻璃砖,其中心光线P通过O点,如图19-2-17所示.M、N为光束边界光线.则M、N射出玻璃砖后的相交点距O点的距离为多少?
图19-2-17
在水平面上平行放置着两根长度均为L的金属导轨MN和PQ,导轨间距为d,导轨和电路的连接如图12所示.在导轨的MP端放置着一根金属棒,与导轨垂直且接触良好.空间中存在竖直向上方向的匀强磁场,磁感应强度为B.将开关S1闭合,S2断开,电压表和电流表的示数分别为U1和I1,金属棒仍处于静止状态;再将开关S2闭合,电压表和电流表的示数分别为U2和I2,金属棒在导轨上由静止开始运动,运动过程中金属棒始终与导轨垂直.设金属棒的质量为m,金属棒与导轨之间的动摩擦因数为μ,忽略导轨的电阻以及金属棒运动过程中产生的感应电动势,重力加速度为g,求:
图12
(1)金属棒到达NQ端时的速度大小.
(2)金属棒在导轨上运动的过程中,电流在金属棒中产生的热量.
在倾角θ=30°的斜面上,固定一金属框,宽l="0.25" m,接入电动势E="12" V、内阻不计的电池.垂直框的两对边放有一根质量m="0.2" kg的金属棒ab,它与框架的动摩擦因数μ=整个装置放在磁感应强度B="0.8" T、垂直框面向上的匀强磁场中,如图所示.当调滑动变阻器R的阻值在什么范围内,可使金属棒静止在框架上?框架与棒的电阻不计,g取10 m/s2
图11
.如图9所示,a、b是直线电流的磁场,c、d是环形电流的磁场,e、f是螺线管电流的磁场.试在图中补画出电流的方向或磁感线方向.
图9
图1所示,y轴右侧有垂直纸面向里的匀强磁场,第Ⅱ象限内有水平的匀强电场.有一质量为m、电荷量为q的带负电的粒子(不计重力),从P点以初速度v0沿+y方向射入电场中,OP=L,粒子在电场中运动一段时间后进入磁场,进入磁场时,速度方向与+x方向成30°角,并且恰好经过坐标原点O再进入电场中继续运动.求:
(1)电场强度E的大小;
(2)磁感应强度B的大小.
图1
在某一真空中建立xOy坐标系,从原点O处向第Ⅰ象限发射一比荷qm=1×104 C/kg的带正电的粒子(重力不计),初速度v0=103 m/s,方向与x轴正方向成30°角.
(1)若在坐标系y轴右侧加匀强磁场,在第Ⅰ象限,磁场方向垂直xOy平面向外,在第Ⅳ象限,磁场方向垂直xOy平面向里,磁感应强度均为B="1" T,如图18(a)所示.求粒子从O点射出后,第2次经过x轴时的坐标x1.
(2)若将上述磁场改为如图18(b)所示的匀强磁场,在t=0到t=2π3×10-4 s时,磁场方向垂直于xOy平面向外;在t=2π3×10-4 s到t=4π3×10-4 s时,磁场方向垂直于xOy平面向里,此后该空间不存在磁场.在t=0时刻,粒子仍从O点以与原来相同的初速度v0射入,求粒子从O点射出后第2次经过x轴时的坐标x2.
图18