某同学在测定一厚度均匀的圆形玻璃的折射率时,先在白纸上作一与圆形玻璃同半径的圆,圆心为O,将圆形玻璃平放在白纸上,使其边界与所画的圆重合.在玻璃一侧竖直插两枚大头针P1和P2.在另一侧再先后插两枚大头针P3和P4,使从另一侧隔着玻璃观察时,大头针P4、P3和P2、P1的像恰在一直线上.移去圆形玻璃和大头针后,在图13-1-24中画出:
图13-1-24
(1)沿P1、P2连线方向的入射光线通过圆形玻璃后的传播方向;
(2)光线在玻璃内的传播方向;
(3)过光线的入射点作法线,标出入射角θ1和折射角θ2;
(4)写出计算玻璃折射率的公式.
如图所示,一个轻质直角形薄板ABC,AB=0.80m,AC="0.60" m,在A点固定一垂直于薄板平面的光滑转动轴,在薄板上D点固定一个质量为m=0.40kg的小球,现用测力计竖直向上拉住B点,使AB水平,如图(a),测得拉力F1=2.0N;再用测力计竖直向上拉住C点,使AC水平,如图(b),测得拉力F2=2.0N(g取10m/s2,sin37°=0.6,cos37°=0.8)。求:
(1)小球和转动轴的距离AD;
(2)在如图(a)情况下,将小球移动到BC边上距离A点最近处,然后撤去力F1,薄板转动过程中,AB边能转过的最大角度;
(3)在第(2)问条件下,薄板转动过程中,B点能达到的最大速度。
如图所示,用内壁光滑的薄壁细圆管弯成的由半圆形APB(圆半径比细管的内径大得多)和直线BC组成的轨道固定在水平桌面上,已知APB部分的半径R=1.0 m,BC段长L=1.5m。弹射装置将一个小球(可视为质点)以v0=5m/s的水平初速度从A点弹入轨道,小球从C点离开轨道随即水平抛出,落地点D离开C的水平距离s=2m,不计空气阻力,g取10m/s2。求:
(1)小球在半圆轨道上运动时的角速度ω和加速度a的大小;
(2)小球从A点运动到C点的时间t;
(3)桌子的高度h。
如图所示,质量m=5.0kg的物体,置于倾角为α=37°的固定的、足够长的斜面上,物体与斜面间的动摩擦因数为μ=0.25,物体在水平推力F=100N的作用下从静止开始沿斜面向上运动,2s后撤去F,求:
(1)F作用时物体的加速度的大小
(2)撤去F后物体继续向上运动时加速度的大小
(3)在整个过程中,物体沿斜面向上运动的最大距离
如图所示,在平面直角坐标系中,直线
与
轴成30°角,
点的坐标为(
,0),在
轴与直线
之间的区域内,存在垂直于
平面向里磁感强度为
的匀强磁场.均匀分布的电子束以相同的速度
从
轴上
的区间垂直于
轴和磁场方向射入磁场.己知从
轴上
点射入磁场的电子在磁场中的轨迹恰好经过
点,忽略电子间的相互作用,不计电子的重力.
(1)电子的比荷();
(2)有一电子,经过直线MP飞出磁场时,它的速度方向平行于y轴,求该电子在y轴上的何处进入磁场;
(3)若在直角坐标系的第一象限区域内,加上方向沿
轴正方向大小为
的匀强电场,在
处垂直于
轴放置一平面荧光屏,与
轴交点为
,求:从O点上方最远处进入电场的粒子打在荧光屏上的位置。
如图甲是质谱仪的工作原理示意图.图中的A容器中的正离子从狭缝S1以很小的速度进入电压为U的加速电场区(初速度不计)加速后,再通过狭缝S2从小孔G垂直于MN射入偏转磁场,该偏转磁场是以直线MN为上边界、方向垂直于纸面向外的匀强磁场,磁感应强度为B,离子最终到达MN上的H点(图中未画出),测得G、H间的距离为d,粒子的重力可忽略不计。试求:
(1)该粒子的比荷
(2)若偏转磁场为半径为的圆形区域,且与MN相切于G点,如图乙所示,其它条件不变,仍保证上述粒子从G点垂直于MN进入偏转磁场,最终仍然到达MN上的H点,则圆形区域中磁场的磁感应强度
与B之比为多少?