将数列 { a n } 中的所有项按每一行比上一行多一项的规则排成下表: a 1
a 2 a 3
a 4 a 5 a 6
a 7 a 8 a 9 a 10
…… 记表中的第一列数 a 1 , a 2 , a 4 , a 7 ……构成的数列为 { b n } , b 1 = a 1 = 1 , S n 为数列 { b n } 的前 n 项和,且满足 2 b n b n S n - S n 2 = 1 ( n ≥ 2 )
(I)证明数列 { 1 S n } 成等差数列,并求数列 { b n } 的通项公式; (II)上表中,若从第三行起,每一行中的数从左到右的顺序均构成等比数列,且公比为同一个正数,当 a 31 = - 4 91 时,求上表中第 k ( k ≥ 3 ) 行所有项的和
设,若直线与轴相交于点,与轴相交于,且与圆相交所得弦的长为2,为坐标原点,求面积的最小值.
中,已知,,设,的周长为. (Ⅰ)求的表达式;(Ⅱ)当为何值时最大,并求出的最大值.
已知等差数列中,,. (Ⅰ)求数列的通项公式; (Ⅱ)若数列满足:,并且,试求数列的前项和.
已知;若是的必要非充分条件,求实数的取值范围。
(本小题满分12分) 已知函数f(x)=Asin(x+)(x∈R,>0, 0<<)的部分图象如图所示。 (1)求函数f(x)的解析式; (2)求函数g(x)=f(x-)的单调递增区间。
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号