用放射源钋的α射线轰击铍时,能发射出一种穿透力极强的中性射线,这就是所谓铍“辐射”.1932年,查德威克用铍“辐射”分别照射(轰击)氢和氮(它们可视为处于静止状态),测得照射后沿铍“辐射”方向高速运动的氢核和氮核的速度之比为7.0∶1.查德威克假设铍“辐射”是由一种质量不为零的中性粒子构成的,从而通过上述实验在历史上首次发现了中子.假定铍“辐射”中的中性粒子与氢核或氮核发生弹性正碰,试在不考虑相对论效应的条件下计算构成铍“辐射”的中性粒子的质量.(质量用原子质量单位u表示,1 u等于一个12C原子质量的十二分之一.取氢核和氮核的质量分别为1.0 u和14 u)
开普勒从1609年~1619年发表了著名的开普勒行星运动三定律.第一定律:所有的行星分别在大小不同的椭圆轨道上围绕太阳运动,太阳在这个椭圆的一个焦点上;第二定律:太阳和行星的连线在相等的时间内扫过的面积相等;第三定律:所有行星的椭圆轨道的半长轴的三次方跟公转周期的平方的比值相等.实践证明,开普勒三定律也适用于人造地球卫星的运动.如果人造地球卫星沿半径为r的圆轨道绕地球运动,当开启制动发动机后,卫星转移到与地球相切的椭圆形轨道,如图所示.问在这之后,卫星多长时间着陆?空气阻力不计,地球半径为R,地球表面重力加速度为g.
已知地球质量是月球质量的81倍,地球半径约为月球半径的4倍,在地球上发射近地卫星的环绕速度为7.9km/s.那么在月球上发射一艘靠近月球表面运行的宇宙飞船,它的环绕速度为多大?
我国于1984年4月8日成功发射了一颗同步轨道(也叫静止轨道)通信卫星,8天后定位于东经125°的赤道上空,成为少数几个能独立发射同步卫星的国家之一.已知地球表面的重力加速度g="9.8" km/s,地球半径R="6" 400 km,月球公转周期为T′="27" d,月球轨道半径R′≈60R,试求地球同步卫星距地面的高度和运行速度.
太阳光照射到地面历时500s,已知地球半径为6.4×106m,万有引力常量为6.67×10-11N·m2/kg2,求太阳的质量与地球质量之比是多少.(取一位有效数字即可)
设想有一宇航员在某行星的极地上着陆时,发现在当地的重力是同一物体在地球上重力的0.01倍,而该行星一昼夜的时间与地球相同,物体在它的赤道上时恰好失重.若存在这样的星球,它的半径R应为多大?