如图所示,两条光滑的绝缘导轨,导轨的水平部分与圆弧部分平滑连接,两导轨间距为L,导轨的水平部分有n段相同的匀强磁场区域(图中的虚线范围),磁场方向竖直向上,磁场的磁感应强度为B,磁场的宽度为s,相邻磁场区域的间距也为s,s大于L,磁场左右两边界均与导轨垂直。现有一质量为m,电阻为r,边长为L的正方形金属框,由圆弧导轨上某高度处静止释放,金属框滑上水平导轨,在水平导轨上滑行一段时间进入磁场区域,最终线框恰好完全通过n段磁场区域。地球表面处的重力加速度为g,感应电流的磁场可以忽略不计,求:
(1)刚开始下滑时,金属框重心离水平导轨所在平面的高度。
(2)整个过程中金属框内产生的电热。
(3)金属框完全进入第k(k<n=段磁场区域前的时刻,金属框中的电功率。
如图所示,MN和PQ是竖直放置相距1m为的滑平行金属导轨(导轨足够长,电阻不计),其上方连有=9Ω的电阻和两块水平放置相距d=20cm的平行金属板A.C,金属板长1m,将整个装置放置在图示的匀强磁场区域,磁感强度B=1T,现使电阻
=1Ω的金属棒ab与导轨MN、PQ接触,并由静止释放,当其下落h=10m时恰能匀速运动(运动中ab棒始终保持水平状态,且与导轨接触良好).此时,将一质量
=0.45g,带电量q=1.0×
的微粒放置在A.C金属板的正中央,恰好静止.g=10m/
).求:
(1)微粒带何种电荷?ab棒的质量是多少?
(2)金属棒自静止释放到刚好匀速运动的过程中,电路中释放多少热量?
(3)若使微粒突然获得竖直向下的初速度,但运动过程中不能碰到金属板,对初速度
有何要求?该微粒发生大小为
的位移时,需多长时间?
正粒子(不计重力)从坐标原点O沿y轴正方向射入磁场,若要粒子垂直打在屏MN上.求:
①粒子从原点射入时的速度v;
②粒子从射入磁场到垂直打在屏MN上所需时间t.
如图所示,空间分布着宽为L、场强为E的匀强电场和两磁感强度大小均为B、方向相反的匀强磁场(虚线为磁场分界线,右边磁场范围足够大).质量为m、电量为q的离子从A点由静止释放后经电场加速进入磁场,穿过中间磁场后按某一路径能再回到A点而重复前述过程.求:
(1)离子进入磁场时的速度大小和运动半径.
(2)中间磁场的宽度D.
一质量为m、带电量为+q的粒子以速度v0从O点沿y轴正方向射入磁感应强度为B的圆形匀强磁场区域,磁场方向垂直纸面向外,粒子飞出磁场区域后,从b处穿过x轴,速度方向与x轴正方向的夹角为,同时进入场强为E、方向沿与x轴负方向成
角斜向下的匀强电场中,通过了b点正下方的c点.如图所示,粒子的重力不计,试求:
(1)圆形匀强磁场区域的最小面积:
(2)c点到b点的距离.
如图所示,虚线上方有场强为E1=6×104N/C的匀强电场,方向竖直向上,虚线下方有场强为E2的匀强电场,电场线用实线表示,另外,在虚线上、下方均有匀强磁场,磁感应强度相等,方向垂直纸面向里,ab是一长为L=0.3m的绝缘细杆,沿E1电场线方向放置在虚线上方的电、磁场中,b端在虚线上,将一套在ab杆上的带电量为q=-5×10-8C的带电小环从a端由静止释放后,小环先作加速运动而后作匀速运动到达b端,小环与杆间的动摩擦因数μ=0.25,不计小环的重力,小环脱离ab杆后在虚线下方仍沿原方向作匀速直线运动.
(1)请指明匀强电场E2的场强方向,说明理由,并计算出场强E2的大小;
(2)若撤去虚线下方电场E2,其他条件不变,小环进入虚线下方区域后运动轨迹是半径为L/3的半圆,小环从a到b的运动过程中克服摩擦力做的功为多少?