已知函数 f ( x ) = ln ( 1 + x ) - x 1
(Ⅰ)求 f ( x ) 的单调区间; (Ⅱ)记 f ( x ) 在区间 0 , π ( n ∈ N * )上的最小值为 b x 令 a n = ln ( 1 + n ) - b x . (ⅰ)如果对一切 n ,不等式 a n < a n - 2 - c a n + 2 恒成立,求实数 c 的取值范围; (ⅱ)求证: a 1 a 3 + a 1 a 3 a 2 a 4 + . . . + a 1 a 3 . . . a 2 n - 1 a 2 a 4 . . . a 2 n < 2 a n + 1 - 1 .
在中,角所对的边分别是,向量,向量,且. (Ⅰ)求角的大小; (Ⅱ)若,求的面积.
已知 (Ⅰ)求的值;(Ⅱ)求的值.
设向量满足及, (Ⅰ)求夹角的大小; (Ⅱ)求的值.
已知函数. (1)求的单调递增区间; (2)若在处的切线与直线垂直,求证:对任意,都有; (3)若,对于任意,都有成立,求实数的取值范围.
已知函数处取得极值. (1)求的值; (2)求的单调区间; (3)若当时恒有成立,求实数c的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号