如图,斜率为1的直线过抛物线的焦点F,与抛物线交于两点A,B。(1)若|AB|=8,求抛物线的方程;(2)设C为抛物线弧AB上的动点(不包括A,B两点),求的面积S的最大值;(3)设P是抛物线上异于A,B的任意一点,直线PA,PB分别交抛物线的准线于M,N两点,证明M,N两点的纵坐标之积为定值(仅与p有关)
解关于的不等式。
已知等比数列中,, (1)求数列的通项公式; (2)设等差数列中,,求数列的前项和。
在中,已知,,, 求、及。
已知函数 (1)当时,求函数在上的最大值和最小值; (2)讨论函数的单调性; (3)若函数在处取得极值,不等式对恒成立,求实数的取值范围。
在平面直角坐标系xOy中,已知曲线,将上的所有点的横坐标、纵坐标分别伸长为原来的、2倍后得到曲线. 以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线. (1)试写出直线的直角坐标方程和曲线的参数方程; (2)在曲线上求一点P,使点P到直线的距离最大,并求出此最大值.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号