甲、乙、丙,3人用擂台赛形式进行训练,每局2人进行单打比赛,另1人当裁判,每一局的输方当下一局的裁判,由原来的裁判向胜者挑战.半天训练结束时,发现甲共打了12局,乙共打了21局,而丙共当裁判8局.那么整个比赛的第10局的输方 ( )必是甲
必是乙
必是丙
不能确定
设定义在D上的函数在点
处的切线方程为
,当
时,若
在D内恒成立,则称P为函数
的“类对称点”,则
的“类对称点”的横坐标是
A.1 | B.![]() |
C.e | D.![]() |
已知抛物线的一条过焦点F的弦PQ,点R在直线PQ上,且满足,R在抛物线准线上的射影为S,设
,
是△PQS中的两个锐角,则下列四个式子中一定正确的有()
①
②
③
④
A.1个 | B.2个 | C.3个 | D.4个 |
已知x, y, R,且
,则
的最小值是()
A.20 | B.25 | C.36 | D.47 |
用表示非空集合A中的元素个数,定义
.若
,
,且
,由a的所有可能值构成的集合为S,那么C(S)等于()
A.1 | B.2 | C.3 | D.4 |
已知实数等比数列{an}的前n项和为Sn,则下列结论中一定成立的()
A.若![]() ![]() |
B.若![]() ![]() |
C.若![]() ![]() |
D.若![]() ![]() |